The Role of Tropospheric Rossby Wave Breaking in the Pacific Decadal Oscillation

Courtenay Strong University of California, Irvine, Irvine, California

Search for other papers by Courtenay Strong in
Current site
Google Scholar
PubMed
Close
and
Gudrun Magnusdottir University of California, Irvine, Irvine, California

Search for other papers by Gudrun Magnusdottir in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The leading pattern of extratropical Pacific sea surface temperature variability [the Pacific decadal oscillation (PDO)] is shown to depend on observed variability in the spatiotemporal distribution of tropospheric Rossby wave breaking (RWB), where RWB is the irreversible overturning of potential vorticity on isentropic surfaces. Composite analyses based on hundreds of RWB cases show that anticyclonic (cyclonic) RWB is associated with a warm, moist (cool, dry) column that extends down to a surface anticyclonic (cyclonic) circulation, and that the moisture and temperature advection associated with the surface circulation patterns force turbulent heat flux anomalies that project onto the spatial pattern of the PDO. The RWB patterns that are relevant to the PDO are closely tied to El Niño–Southern Oscillation, the Pacific–North American pattern, and the northern annular mode. These results explain the free troposphere-to-surface segment of the atmospheric bridge concept wherein El Niño anomalies emerge in summer and modify circulation patterns that act over several months to force sea surface temperature anomalies in the extratropical Pacific during late winter or early spring. Leading patterns of RWB account for a significant fraction of PDO interannual variability for any month of the year. A multilinear model is developed in which the January mean PDO index for 1958–2006 is regressed upon the leading principal components of cyclonic and anticyclonic RWB from the immediately preceding winter and summer months (four indexes in all), accounting for more than two-thirds of the variance.

Corresponding author address: Courtenay Strong, Department of Earth System Science, University of California, Irvine, Irvine, CA 92697–3100. Email: cstrong@uci.edu

Abstract

The leading pattern of extratropical Pacific sea surface temperature variability [the Pacific decadal oscillation (PDO)] is shown to depend on observed variability in the spatiotemporal distribution of tropospheric Rossby wave breaking (RWB), where RWB is the irreversible overturning of potential vorticity on isentropic surfaces. Composite analyses based on hundreds of RWB cases show that anticyclonic (cyclonic) RWB is associated with a warm, moist (cool, dry) column that extends down to a surface anticyclonic (cyclonic) circulation, and that the moisture and temperature advection associated with the surface circulation patterns force turbulent heat flux anomalies that project onto the spatial pattern of the PDO. The RWB patterns that are relevant to the PDO are closely tied to El Niño–Southern Oscillation, the Pacific–North American pattern, and the northern annular mode. These results explain the free troposphere-to-surface segment of the atmospheric bridge concept wherein El Niño anomalies emerge in summer and modify circulation patterns that act over several months to force sea surface temperature anomalies in the extratropical Pacific during late winter or early spring. Leading patterns of RWB account for a significant fraction of PDO interannual variability for any month of the year. A multilinear model is developed in which the January mean PDO index for 1958–2006 is regressed upon the leading principal components of cyclonic and anticyclonic RWB from the immediately preceding winter and summer months (four indexes in all), accounting for more than two-thirds of the variance.

Corresponding author address: Courtenay Strong, Department of Earth System Science, University of California, Irvine, Irvine, CA 92697–3100. Email: cstrong@uci.edu

Save
  • Abatzoglou, J. T., and G. Magnusdottir, 2006: Planetary wave breaking and nonlinear reflection: Seasonal cycle and interannual variability. J. Climate, 19 , 61396152.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12 , 24192433.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Austin, P. C., and J. V. Tu, 2004: Bootstrap methods for developing predictive models. Amer. Stat., 58 , 131137.

  • Cayan, D. D., M. D. Dettinger, H. F. Diaz, and N. E. Graham, 1998: Decadal variability of precipitation over western North America. J. Climate, 11 , 31483166.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North–south precipitation patterns in western North America on interannual-to-decadal timescales. J. Climate, 11 , 30953111.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29 , 1367. doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45 , RG2005. doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58 , 3544.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and theoretical LC1/2 classification. J. Atmos. Sci., 64 , 25762592.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305 , 593600.

  • Minobe, S., 1997: A 50–70–year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24 , 683686.

  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26 , 855858.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. A. Renfrew, 2002: An assessment of the surface turbulent heat fluxes from the NCEP–NCAR reanalysis over the western boundary currents. J. Climate, 15 , 20202037.

    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., 1986: El Niño, interannual variability and fisheries in the northeast Pacific Ocean. Can. J. Fish. Aquat. Sci., 43 , 464497.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20 , 23332356.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2005: A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62 , 13671390.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18 , 43554373.

  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15 , 23402358.

  • Strong, C., and G. Magnusdottir, 2008: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65 , 28612876.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Wold, H. O. A., 1982: Soft modeling, the basic design and some extensions. Systems under Indirect Observation: Causality, Structure, Prediction, Vol. 2, K. G. Jöreskog and H. O. A. Wold, Eds., North-Holland, 1–54.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Climate Survey, CIMMS and the School of Meteorology, University of Oklahoma, 52–57.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004: The impact of internal atmospheric variability on the North Pacific SST variability. Climate Dyn., 22 , 721732.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., B. P. Kirtman, and S-I. An, 2007: Local versus non-local atmospheric weather noise and the North Pacific SST variability. Geophys. Res. Lett., 34 , L14706. doi:10.1029/2007GL030206.

    • Search Google Scholar
    • Export Citation
  • Yu, B., A. Shabbar, and F. W. Zwiers, 2007: The enhanced PNA-like climate response to Pacific interannual and decadal variability. J. Climate, 20 , 52855300.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and N. Iwasaka, 1996: Is climate variability over the North Pacific a linear response to ENSO? J. Climate, 9 , 14681478.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 799 359 137
PDF Downloads 318 57 12