Contributions of Indian Ocean and Monsoon Biases to the Excessive Biennial ENSO in CCSM3

Jin-Yi Yu Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Jin-Yi Yu in
Current site
Google Scholar
PubMed
Close
,
Fengpeng Sun Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Fengpeng Sun in
Current site
Google Scholar
PubMed
Close
, and
Hsun-Ying Kao Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Hsun-Ying Kao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Community Climate System Model, version 3 (CCSM3), is known to produce many aspects of El Niño–Southern Oscillation (ENSO) realistically, but the simulated ENSO exhibits an overly strong biennial periodicity. Hypotheses on the cause of this excessive biennial tendency have thus far focused primarily on the model’s biases within the tropical Pacific. This study conducts CCSM3 experiments to show that the model’s biases in simulating the Indian Ocean mean sea surface temperatures (SSTs) and the Indian and Australian monsoon variability also contribute to the biennial ENSO tendency. Two CCSM3 simulations are contrasted: a control run that includes global ocean–atmosphere coupling and an experiment in which the air–sea coupling in the tropical Indian Ocean is turned off by replacing simulated SSTs with an observed monthly climatology. The decoupling experiment removes CCSM3’s warm bias in the tropical Indian Ocean and reduces the biennial variability in Indian and Australian monsoons by about 40% and 60%, respectively. The excessive biennial ENSO is found to reduce dramatically by about 75% in the decoupled experiment. It is shown that the biennial monsoon variability in CCSM3 excites an anomalous surface wind pattern in the western Pacific that projects well into the wind pattern associated with the onset phase of the simulated biennial ENSO. Therefore, the biennial monsoon variability is very effective in exciting biennial ENSO variability in CCSM3. The warm SST bias in the tropical Indian Ocean also increases ENSO variability by inducing stronger mean surface easterlies along the equatorial Pacific, which strengthen the Pacific ocean–atmosphere coupling and enhance the ENSO intensity.

* Current affiliation: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Corresponding author address: Dr. Jin-Yi Yu, Department of Earth System Science, 3315 Croul Hall, Mail Code 3100, University of California, Irvine, Irvine, CA 92697-3100. Email: jyyu@uci.edu

Abstract

The Community Climate System Model, version 3 (CCSM3), is known to produce many aspects of El Niño–Southern Oscillation (ENSO) realistically, but the simulated ENSO exhibits an overly strong biennial periodicity. Hypotheses on the cause of this excessive biennial tendency have thus far focused primarily on the model’s biases within the tropical Pacific. This study conducts CCSM3 experiments to show that the model’s biases in simulating the Indian Ocean mean sea surface temperatures (SSTs) and the Indian and Australian monsoon variability also contribute to the biennial ENSO tendency. Two CCSM3 simulations are contrasted: a control run that includes global ocean–atmosphere coupling and an experiment in which the air–sea coupling in the tropical Indian Ocean is turned off by replacing simulated SSTs with an observed monthly climatology. The decoupling experiment removes CCSM3’s warm bias in the tropical Indian Ocean and reduces the biennial variability in Indian and Australian monsoons by about 40% and 60%, respectively. The excessive biennial ENSO is found to reduce dramatically by about 75% in the decoupled experiment. It is shown that the biennial monsoon variability in CCSM3 excites an anomalous surface wind pattern in the western Pacific that projects well into the wind pattern associated with the onset phase of the simulated biennial ENSO. Therefore, the biennial monsoon variability is very effective in exciting biennial ENSO variability in CCSM3. The warm SST bias in the tropical Indian Ocean also increases ENSO variability by inducing stronger mean surface easterlies along the equatorial Pacific, which strengthen the Pacific ocean–atmosphere coupling and enhance the ENSO intensity.

* Current affiliation: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Corresponding author address: Dr. Jin-Yi Yu, Department of Earth System Science, 3315 Croul Hall, Mail Code 3100, University of California, Irvine, Irvine, CA 92697-3100. Email: jyyu@uci.edu

Save
  • Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979 present). J. Hydrometeor, 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Chang, C-P., and T. Li, 2000: A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci., 57 , 22092224.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19 , 24512481.

    • Search Google Scholar
    • Export Citation
  • Hung, C. W., and M. Yanai, 2004: Factors contributing to the onset of the Australian summer monsoon. Quart. J. Roy. Meteor. Soc., 130 , 739758.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Kug, J-S., and I-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19 , 17841801.

  • Kug, J-S., T. Li, S-I. An, I-S. Kang, J-J. Luo, S. Masson, and T. Yamagata, 2006: Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33 , L09710. doi:10.1029/2005GL024916.

    • Search Google Scholar
    • Export Citation
  • Li, T., P. Liu, X. Fu, B. Wang, and G. A. Meehl, 2006: Spatiotemporal structures and mechanisms of the tropospheric biennial oscillation in the Indo-Pacific warm ocean regions. J. Climate, 19 , 30703087.

    • Search Google Scholar
    • Export Citation
  • Loschnigg, J., G. A. Meehl, P. J. Webster, J. M. Arblaster, and G. P. Compo, 2003: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM. J. Climate, 16 , 16171642.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115 , 2750.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1993: A coupled air–sea biennial mechanism in the tropical Indian and Pacific regions: Role of the ocean. J. Climate, 6 , 3141.

    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., and B. Parthasarathy, 1984: Fluctuations in all-India summer monsoon rainfall during 1871–1978. Climatic Change, 6 , 287301.

    • Search Google Scholar
    • Export Citation
  • Ogasawara, N., A. Kitoh, T. Yasunari, and A. Noda, 1999: Tropospheric biennial oscillation of the ENSO–monsoon system in the MRI coupled GCM. J. Meteor. Soc. Japan, 77 , 12471270.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Terray, P., and S. Dominiak, 2005: Indian Ocean sea surface temperature and El Niño–Southern Oscillation: A new perspective. J. Climate, 18 , 13511368.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2008a: Two regimes of the equatorial warm pool. Part I: A simple tropical climate model. J. Climate, 21 , 35333544.

  • Watanabe, M., 2008b: Two regimes of the equatorial warm pool. Part II: Hybrid coupled GCM experiments. J. Climate, 21 , 35453560.

  • Webster, P. J., C. Clark, G. Cherikova, J. Fasullo, W. Han, J. Loschnigg, and K. Sahami, 2001: The monsoon as a self-regulating coupled ocean–atmosphere system. Meteorology at the Millennium, B. Pierce, Ed., Academic Press, 650 pp.

    • Search Google Scholar
    • Export Citation
  • Wu, R. G., and B. P. Kirtman, 2004: Impacts of the Indian Ocean on the Indian summer monsoon–ENSO relationship. J. Climate, 17 , 30373054.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5 , 572584.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29 , 1204. doi:10.1029/2001GL014098.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., S-P. Weng, and J. D. Ferrara, 2003: Ocean roles in the TBO transitions of the Indian–Australian monsoon system. J. Climate, 16 , 30723080.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 61 4
PDF Downloads 97 39 1