Understanding Recent Stratospheric Climate Change

David W. J. Thompson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David W. J. Thompson in
Current site
Google Scholar
PubMed
Close
and
Susan Solomon Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Susan Solomon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The long-term, global-mean cooling of the lower stratosphere stems from two downward steps in temperature, both of which are coincident with the cessation of transient warming after the volcanic eruptions of El Chichón and Mount Pinatubo. Previous attribution studies reveal that the long-term cooling is linked to ozone trends, and modeling studies driven by a range of known forcings suggest that the steps reflect the superposition of the long-term cooling with transient variability in upwelling longwave radiation from the troposphere. However, the long-term cooling of the lower stratosphere is evident at all latitudes despite the fact that chemical ozone losses are thought to be greatest at middle and polar latitudes. Further, the ozone concentrations used in such studies are based on either 1) smooth mathematical functions fit to sparsely sampled observations that are unavailable during postvolcanic periods or 2) calculations by a coupled chemistry–climate model.

Here the authors provide observational analyses that yield new insight into three key aspects of recent stratospheric climate change. First, evidence is provided that shows the unusual steplike behavior of global-mean stratospheric temperatures is dependent not only upon the trend but also on the temporal variability in global-mean ozone immediately following volcanic eruptions. Second, the authors argue that the warming/cooling pattern in global-mean temperatures following major volcanic eruptions is consistent with the competing radiative and chemical effects of volcanic eruptions on stratospheric temperature and ozone. Third, it is revealed that the contrasting latitudinal structures of recent stratospheric temperature and ozone trends are consistent with large-scale increases in the stratospheric overturning Brewer–Dobson circulation.

Corresponding author address: David Thompson, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: davet@atmos.colostate.edu

Abstract

The long-term, global-mean cooling of the lower stratosphere stems from two downward steps in temperature, both of which are coincident with the cessation of transient warming after the volcanic eruptions of El Chichón and Mount Pinatubo. Previous attribution studies reveal that the long-term cooling is linked to ozone trends, and modeling studies driven by a range of known forcings suggest that the steps reflect the superposition of the long-term cooling with transient variability in upwelling longwave radiation from the troposphere. However, the long-term cooling of the lower stratosphere is evident at all latitudes despite the fact that chemical ozone losses are thought to be greatest at middle and polar latitudes. Further, the ozone concentrations used in such studies are based on either 1) smooth mathematical functions fit to sparsely sampled observations that are unavailable during postvolcanic periods or 2) calculations by a coupled chemistry–climate model.

Here the authors provide observational analyses that yield new insight into three key aspects of recent stratospheric climate change. First, evidence is provided that shows the unusual steplike behavior of global-mean stratospheric temperatures is dependent not only upon the trend but also on the temporal variability in global-mean ozone immediately following volcanic eruptions. Second, the authors argue that the warming/cooling pattern in global-mean temperatures following major volcanic eruptions is consistent with the competing radiative and chemical effects of volcanic eruptions on stratospheric temperature and ozone. Third, it is revealed that the contrasting latitudinal structures of recent stratospheric temperature and ozone trends are consistent with large-scale increases in the stratospheric overturning Brewer–Dobson circulation.

Corresponding author address: David Thompson, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: davet@atmos.colostate.edu

Save
  • Baldwin, M. P., and Coauthors, 2007: Climate-ozone connections. Scientific assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project Rep. 50, 5.1–5.49.

    • Search Google Scholar
    • Export Citation
  • Bhartia, P. K., J. Herman, R. D. McPeters, and O. Torres, 1993: Effect of Mount Pinatubo aerosols on total ozone measurements from backscatter ultraviolet (BUV) experiments. J. Geophys. Res., 98 , 1854718554.

    • Search Google Scholar
    • Export Citation
  • Bodeker, G. E., H. Garny, D. Smale, M. Dameris, and R. Deckert, 2007: The 1985 Southern Hemisphere mid-latitude total column ozone anomaly. Atmos. Chem. Phys., 7 , 56255637.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and the troposphere in a changing climate. Nature, 410 , 799802.

    • Search Google Scholar
    • Export Citation
  • Chipperfield, M. P., and V. E. Fioletov, 2007: Global ozone: Past and present. Scientific assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project Rep. 50, 3.1–3.55.

    • Search Google Scholar
    • Export Citation
  • Dameris, M., and Coauthors, 2005: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing. Atmos. Chem. Phys., 5 , 21212145.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., and D. L. Hartmann, 2005: Changes in the strength of the Brewer-Dobson circulation in a simple AGCM. Geophys. Res. Lett., 32 , L15807. doi:10.1029/2005GL022924.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111 , D22308. doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Fioletov, V. E., G. E. Bodeker, A. J. Miller, R. D. McPeters, and R. Stolarski, 2002: Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964–2000. J. Geophys. Res., 107 , 4647. doi:10.1029/2001JD001350.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., C. H. Jackman, D. K. Weisenstein, and M. K. W. Ko, 2007: The impact of interannual variability on multidecadal total ozone simulations. J. Geophys. Res., 112 , D10310. doi:10.1029/2006JD007953.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., G. Bodeker, R. Schofield, S. Solomon, and D. Thompson, 2007: Effects of ozone cooling in the tropical lower stratosphere and upper troposphere. Geophys. Res. Lett., 34 , L23813. doi:10.1029/2007GL031994.

    • Search Google Scholar
    • Export Citation
  • Gleason, J. F., and Coauthors, 1993: Record low global ozone in 1992. Science, 260 , 523526.

  • Hu, Y., and K. K. Tung, 2002: Interannual and decadal variations of planetary wave activity, stratospheric cooling, and Northern Hemisphere annular mode. J. Climate, 15 , 16591673.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., S. J. Hassol, C. D. Miller, and W. L. Murray, Eds. 2006: Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences. U.S. Climate Change Science Program Synthesis and Assessment Product 1.1, 180 pp. [Available online at http://www.climatescience.gov/Library/sap/sap1-1/finalreport/sap1-1-final-all.pdf.].

    • Search Google Scholar
    • Export Citation
  • Langematz, U., M. Kunze, K. Krüger, K. Labitzke, and G. L. Roff, 2003: Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. J. Geophys. Res., 108 , 4027. doi:10.1029/2002JD002069.

    • Search Google Scholar
    • Export Citation
  • Li, F., J. Austin, and J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: Coupled chemistry–climate model simulations. J. Climate, 21 , 4057.

    • Search Google Scholar
    • Export Citation
  • McCormick, M. P., J. M. Zawodny, R. E. Veiga, J. C. Larsen, and P. H. Wang, 1989: An overview of SAGE I and II ozone measurements. Planet. Space Sci., 37 , 15671586.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., M. C. Schabel, and F. J. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16 , 36503664.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., K. Labitzke, and S. Leder, 1998: Stepwise changes in stratospheric temperature. Geophys. Res. Lett., 25 , 21572160.

  • Prather, M., 1992: Catastrophic loss of stratospheric ozone in dense volcanic clouds. J. Geophys. Res., 97 , 1018710191.

  • Ramaswamy, V., and M. D. Schwarzkopf, 2002: Effects of ozone and well-mixed gases on annual-mean stratospheric temperature trends. Geophys. Res. Lett., 29 , 2064. doi:10.1029/2002GL015141.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39 , 71122.

  • Ramaswamy, V., M. D. Schwarzkopf, W. J. Randel, B. D. Santer, B. J. Soden, and G. Stenchikov, 2006: Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311 , 11381141.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and J. B. Cobb, 1994: Coherent variations of monthly mean total ozone and lower stratospheric temperature. J. Geophys. Res., 99 , 54335447.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1999: A stratospheric ozone trends data set for global modeling studies. Geophys. Res. Lett., 26 , 30893092.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2006: Biases in stratospheric and tropospheric temperature trends derived from historical radiosonde data. J. Climate, 19 , 20942104.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2007: A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data. J. Geophys. Res., 112 , D06313. doi:10.1029/2006JD007339.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, H. Vömel, G. Nedoluha, and P. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation. J. Geophys. Res., 111 , D12312. doi:10.1029/2005JD006744.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114 , D02107. doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Rind, D., D. Shindell, P. Lonergan, and N. K. Balachandran, 1998: Climate change and the middle atmosphere. Part III: The doubled CO2 climate revisited. J. Climate, 11 , 876894.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38 , 191219.

  • Rosier, S. M., and K. P. Shine, 2000: The effect of two decades of ozone change on stratospheric temperature, as indicated by a general circulation model. Geophys. Res. Lett., 27 , 26172620.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trend differences in layer-average temperature time series. J. Geophys. Res., 105 , 73377356.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and J. R. Lanzante, 2004: An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J. Geophys. Res., 109 , D14108. doi:10.1029/2003JD004414.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129 , 15651588.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., R. W. Portmann, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick, 1996: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res., 101 , 67136727.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., B. Hassler, H. Claude, P. Winkler, and R. S. Stolarski, 2003: Global distribution of total ozone and lower stratospheric temperature variations. Atmos. Chem. Phys., 3 , 14211438.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., A. R. Douglass, S. Steenrod, and S. Pawson, 2006: Trends in stratospheric ozone: Lessons learned from a 3D chemical transport model. J. Atmos. Sci., 63 , 10281041.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2005: Recent stratospheric climate trends: Global structure and tropospheric linkages. J. Climate, 18 , 47854795.

    • Search Google Scholar
    • Export Citation
  • Wang, H. J., D. M. Cunnold, L. W. Thomason, J. M. Zawodny, and G. E. Bodeker, 2002: Assessment of SAGE version 6.1 ozone data quality. J. Geophys. Res., 107 , 4691. doi:10.1029/2002JD002418.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower stratosphere temperatures. J. Atmos. Sci., 51 , 169174.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 750 245 18
PDF Downloads 273 76 7