• Andres, R. J., and A. D. Kasgnoc, 1998: A time-averaged inventory of subaerial volcanic sulphur emissions. J. Geophys. Res., 103 , 2525125261.

    • Search Google Scholar
    • Export Citation
  • AVISO, 1996: AVISO user handbook: Merged TOPEX/POSEIDON products. CNES, AVI-NT-02-101-CN, edition 3.0, 201 pp.

  • AVISO, 1998: AVISO user handbook: Sea level anomalies (SLAs). CNES, AVI-NT-011-312-CN, edition 3.1, 24 pp.

  • Baringer, M. O., and J. E. Price, 1997: Mixing and spreading of the Mediterranean outflow. J. Phys. Oceanogr., 27 , 16541677.

  • Baringer, M. O., and J. C. Larsen, 2001: Sixteen years of Florida Current transport at 27°N. Geophys. Res. Lett., 28 , 31793182.

  • Beckmann, A., and R. Doscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27 , 581591.

    • Search Google Scholar
    • Export Citation
  • BODC, 2003: Centenary Edition of the GEBCO Digital Atlas. Published on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, CD-ROM.

    • Search Google Scholar
    • Export Citation
  • Bourke, R. H., and R. P. Garrett, 1987: Sea ice thickness distribution in the Arctic Ocean. Cold Reg. Sci. Technol., 13 , 259280.

  • Bryan, F. O., and W. R. Holland, 1989: A high-resolution simulation of the wind- and thermohaline-driven circulation of the North Atlantic Ocean. Parameterization of Small-Scale Processes: Proc. ‘Aha Huliko’a, Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 99–115.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303 , 978983.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., D. S. Stevenson, C. E. Johnson, and R. G. Derwent, 1997: Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls. J. Atmos. Chem., 26 , 223274.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 1999: Bootstrap sea ice concentrations for NIMBUS-7 SMMR and DMSP SSM/I. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0079.html.].

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephen, and J. I. Antonov, 2002: World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation. National Oceanographic Data Center, Internal Rep. 17, 17 pp.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., S-P. Xie, and H. Hashizume, 2003: Barometric pressure variations associated with eastern Pacific tropical instability waves. J. Climate, 16 , 30503057.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in the Drake Passage. J. Geophys. Res., 108 , 8084. doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26°N. Science, 317 , 935938.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131 , 17591782.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and R. D. Smith, 1994: Implicit free surface method for the Bryan–Cox–Semtner ocean model. J. Geophys. Res., 99 , 79918014.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fahrbach, E., J. Meincke, S. Österhus, G. Rohardt, U. Schauer, V. Tverberg, J. Verduin, and R. A. Woodgate, 2001: Direct measurements of heat and mass transports through the Fram Strait. Polar Res., 20 , 217224.

    • Search Google Scholar
    • Export Citation
  • Feistel, R., and E. Hagen, 1995: On the Gibbs thermodynamic potential of seawater. Prog. Oceanog., 36 , 249327.

  • FRAM Group, 1991: An eddy-resolving model of the Southern Ocean. Eos, Trans. Amer. Geophys. Union, 72 , 169, 174175.

  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16 , 696705.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gill, A., 1982: Atmosphere-Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Gordon, A. L., 2001: Interocean exchange. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 303–314.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and J. C. Comiso, 1988: Polynyas in the Southern Ocean. Sci. Amer., 256 , 9097.

  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. D. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28 , 805830.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Guilyardi, E., and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17 , 46234629.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36 , 22322252.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Search Google Scholar
    • Export Citation
  • Hansen, B., and S. Österhus, 2000: North Atlantic-Nordic Seas exchanges. Prog. Oceanogr., 45 , 109208.

  • Hashizume, H., S-P. Xie, W. T. Liu, and K. Takeuchi, 2001: Local and remote atmospheric response to tropical instability waves: A global view from space. J. Geophys. Res., 106 , 1017310185.

    • Search Google Scholar
    • Export Citation
  • Houldcroft, C., W. M. F. Grey, M. Barnsley, C. M. Taylor, S. O. Los, and P. R. J. North, 2009: New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. J. Hydrometeor., 10 , 183198.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., 2001: An impact of subgrid-scale ice–ocean dynamics on sea ice cover. J. Climate, 14 , 15851601.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27 , 18491867.

  • Hunke, E. C., and W. H. Lipscomb, 2004: CICE: The Los Alamos Sea Ice Model, documentation and software, version 3.1. Los Alamos National Laboratory, LA-CC-98-16, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2006: The New Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19 , 13271353.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. L. Townsend, D. M. Fratantoni, and W. B. Wilson, 2002: On the Atlantic inflow to the Caribbean Sea. Deep-Sea Res., 49 , 211243.

    • Search Google Scholar
    • Export Citation
  • Jones, A., D. L. Roberts, M. J. Woodage, and C. E. Johnson, 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106 , 2029320310.

    • Search Google Scholar
    • Export Citation
  • Jónsson, S., and J. Briem, 2003: Flow of Atlantic Water west of Iceland and onto the north Icelandic Shelf. ICES Marine Science Symp., Vol. 219, Edinburgh, United Kingdom, ICES, 326–328.

    • Search Google Scholar
    • Export Citation
  • Jung, T., S. K. Gulev, I. Rudeva, and V. Soloviov, 2006: Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quart. J. Roy. Meteor. Soc., 132 , 18391857.

    • Search Google Scholar
    • Export Citation
  • K-1 Model Developers, 2004: K-1 coupled model (MIROC) description. Center for Climate System Research, University of Tokyo, K-1 Tech. Rep. 1, 34 pp.

  • Kettle, A. J., and Coauthors, 1999: A global database of sea-surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude and month. Global Biogeochem. Cycles, 13 , 399444.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78 , 197208.

  • Kushnir, Y., W. A. Robinson, I. Blade, N. M. Hall, S. Peng, and R. T. Sutton, 2002: Atmospheric response to extratropical SST anomalies: A synthesis and evaluation of recent results. J. Climate, 15 , 22332256.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15 , 522534.

    • Search Google Scholar
    • Export Citation
  • Linzden, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Lipscomb, W. H., 2001: Remapping the ice thickness distribution in sea ice models. J. Geophys. Res., 106 , 1398914000.

  • Loeb, N. G., and Coauthors, 2007: Multi-instrument comparison of top-of-atmosphere reflected solar radiation. J. Climate, 20 , 575591.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21 , 13031330.

    • Search Google Scholar
    • Export Citation
  • Ma, C-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation—A coupled ocean–atmosphere GCM study. J. Climate, 9 , 16351645.

    • Search Google Scholar
    • Export Citation
  • Macrander, A., U. Send, H. Valdimarsson, S. Jónsson, and R. H. Käse, 2005: Interannual changes in the overflow from the Nordic Seas into the Atlantic Ocean through Denmark Strait. Geophys. Res. Lett., 32 , L06606. doi:10.1029/2004GL021463.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., and J. L. McClean, 2005: An eddy resolving global 1/10° ocean simulation. Ocean Modell., 8 , 3154.

  • Marti, O., G. Madec, and P. Delecluse, 1992: Comment on “Net diffusivity in Ocean General Circulation Models with Nonuniform grids” by F. L. Lin and I. Y. Fung. J. Geophys. Res., 97 , 1276312766.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19 , 12741301.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., D. R. Jackett, D. G. Wright, and R. Feistel, 2003: Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmos. Oceanic Technol., 20 , 730741.

    • Search Google Scholar
    • Export Citation
  • McLaren, A. J., and Coauthors, 2006: Evaluation of the sea ice simulation in a new coupled atmosphere-ocean climate model (HadGEM1). J. Geophys. Res., 111 , C12014. doi:10.1029/2005JC003033.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., D. P. Stevens, and K. J. Heywood, 2003: Water mass conversion, fluxes, and mixing in the Scotia Sea diagnosed by an inverse model. J. Phys. Oceanogr., 33 , 25652587.

    • Search Google Scholar
    • Export Citation
  • New, M., D. Lister, M. Hulme, and I. Makin, 2002: A high-resolution data set of surface climate over global land areas. Climate Res., 21 , 125.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM3.0 manual. NOAA/GFDL, 692 pp.

  • Pope, V. D., and R. A. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19 , 211236.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1993: A fast and complete convection scheme for ocean models. Ocean Modell., 101 , 911.

  • Randel, W. J., and F. Wu, 1999: A stratospheric ozone trends data set for global modelling studies. Geophys. Res. Lett., 26 , 30893092.

    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., and Coauthors, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of variability and regional climate. J. Climate, 19 , 13021326.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from 8 years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38 , 23792413.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and D. Marshall, 1998: Do we require adiabatic dissipation schemes in eddy-resolving ocean models? J. Phys. Oceanogr., 28 , 20502063.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2004: Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J. Climate, 17 , 320.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., J. Donners, J. Harle, and I. Stevens, 2008: Impact of relative atmosphere-ocean resolution on coupled climate models. CLIVAR Exchanges, No. 44, International CLIVAR Project Office, Southampton, United Kingdom, 8–11.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2009: Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Rundick, D. L., 1997: Direct velocity measurements in the Samoan Passage. J. Geophys. Res., 102 , 32933302.

  • Russell, J. L., R. J. Stouffer, and K. W. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19 , 45604575.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., A. Sumi, S. Emori, T. Nishimura, H. Hasumi, T. Suzuki, and M. Kimoto, 2004: Far-reaching effects of the Hawaiian Islands in the CCSR/NIES/FRCGC high-resolution climate model. Geophys. Res. Lett., 31 , L17212. doi:10.1029/2004GL020907.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: On the generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6 , 379389.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., and R. M. Chervin, 1988: A simulation of the global ocean circulation with resolved eddies. J. Geophys. Res., 93 , 1550215522.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., and R. M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97 , 54935550.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., P. M. Inness, R. B. Neale, S. J. Woolnough, and G-Y. Yang, 2003: Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann. Geophys., 46 , 139155.

    • Search Google Scholar
    • Export Citation
  • Small, J., S-P. Xie, and Y. Wang, 2003: Numerical simulation of the atmospheric response to Pacific tropical instability waves. J. Climate, 16 , 37223740.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hect, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30 , 15321561.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., R. Andres, E. Conception, and J. Lurz, 2004: Historical sulfur dioxide emissions 1850–2000: Methods and results. Joint Global Change Research Institute, PNNL Rep. 14537, 13 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Spencer, H., and J. M. Slingo, 2002: The simulation of peak and delayed ENSO teleconnections. J. Climate, 16 , 17571774.

  • Spiro, P. A., D. J. Jacob, and J. A. Logan, 1992: Global inventory of sulfur emissions with 1° × 1° resolution. J. Geophys. Res., 97 , 60236036.

    • Search Google Scholar
    • Export Citation
  • Strachan, J., 2007: Understanding and modelling the climate of the maritime continent. Ph.D. thesis, University of Reading, 220 pp.

  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2001: The North Atlantic Oscillation—What role for the ocean? Atmos. Sci. Lett., 1 , 89100.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., D. J. Parker, and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34 , L15801. doi:10.1029/2007GL030572.

    • Search Google Scholar
    • Export Citation
  • Thompson, S. R., 1995: Sills of the global ocean: A compilation. Ocean Modell., 109 , 79.

  • Timmermann, R., P. Lemke, and C. Kottmeier, 1999: Formation and maintenance of a polynya in the Weddell Sea. J. Phys. Oceanogr., 29 , 12511264.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8 , 758769.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27 , 381402.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2002: A modified Sverdrup model of the Atlantic and Caribbean circulation. J. Phys. Oceanogr., 32 , 973993.

  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2 , 14921499.

    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129 , 19892010.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., K. Aagaard, and T. Weingartner, 2005: Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys. Res. Lett., 32 , L04601. doi:10.1029/2004GL021880.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and E. Roeckner, 2006: Radiative fluxes in the ECHAM5 general circulation model. J. Climate, 19 , 37923809.

  • Xie, P., and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 31
PDF Downloads 16 16 16

U.K. HiGEM: The New U.K. High-Resolution Global Environment Model—Model Description and Basic Evaluation

View More View Less
  • * National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom
  • | + School of Mathematics, University of East Anglia, Norwich, United Kingdom
  • | # United Kingdom–Japan Climate Collaboration, Earth Simulator Centre, Yokohama, Japan
  • | @ Met Office Hadley Centre for Climate Prediction and Research, Exeter, United Kingdom
  • | & National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
  • | ** British Antarctic Survey, Cambridge, United Kingdom
  • | ++ Environmental Systems Science Centre, University of Reading, Reading, United Kingdom
  • | h## Centre for Ecology and Hydrology, Wallingford, United Kingdom
  • | @@ Met Office, Exeter, United Kingdom
  • | && British Atmospheric Data Centre, Rutherford Appleton Laboratory, Chilton, United Kingdom
Restricted access

Abstract

This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations.

Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology.

Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.

Corresponding author address: Dr. Len C. Shaffrey, NCAS Climate, Department of Meteorology, University of Reading, Reading RG6 6BB, United Kingdom. Email: l.c.shaffrey@reading.ac.uk

Abstract

This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations.

Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology.

Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.

Corresponding author address: Dr. Len C. Shaffrey, NCAS Climate, Department of Meteorology, University of Reading, Reading RG6 6BB, United Kingdom. Email: l.c.shaffrey@reading.ac.uk

Save