Role of Air–Sea Interaction in the Long Persistence of El Niño–Induced North Indian Ocean Warming

Yan Du Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, and International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Yan Du in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping Xie International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
,
Gang Huang Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

Search for other papers by Gang Huang in
Current site
Google Scholar
PubMed
Close
, and
Kaiming Hu Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

Search for other papers by Kaiming Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño induces a basin-wide increase in tropical Indian Ocean (TIO) sea surface temperature (SST) with a lag of one season. The north IO (NIO), in particular, displays a peculiar double-peak warming with the second peak larger in magnitude and persisting well through the summer. Motivated by recent studies suggesting the importance of the TIO warming for the Northwest Pacific and East Asian summer monsoons, the present study investigates the mechanisms for the second peak of the NIO warming using observations and general circulation models. This analysis reveals that internal air–sea interaction within the TIO is key to sustaining the TIO warming through summer. During El Niño, anticyclonic wind curl anomalies force a downwelling Rossby wave in the south TIO through Walker circulation adjustments, causing a sustained SST warming in the tropical southwest IO (SWIO) where the mean thermocline is shallow. During the spring and early summer following El Niño, this SWIO warming sustains an antisymmetric pattern of atmospheric anomalies with northeasterly (northwesterly) wind anomalies north (south) of the equator. Over the NIO as the mean winds turn into southwesterly in May, the northeasterly anomalies force the second SST peak that persists through summer by reducing the wind speed and surface evaporation. Atmospheric general circulation model experiments show that the antisymmetric atmospheric pattern is a response to the TIO warming, suggestive of their mutual interaction. Thus, ocean dynamics and Rossby waves in particular are important for the warming not only locally in SWIO but also on the basin-scale north of the equator, a result with important implications for climate predictability and prediction.

Corresponding author address: Yan Du, Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Rd., Guangzhou 510301, China. Email: duyan@scsio.ac.cn

Abstract

El Niño induces a basin-wide increase in tropical Indian Ocean (TIO) sea surface temperature (SST) with a lag of one season. The north IO (NIO), in particular, displays a peculiar double-peak warming with the second peak larger in magnitude and persisting well through the summer. Motivated by recent studies suggesting the importance of the TIO warming for the Northwest Pacific and East Asian summer monsoons, the present study investigates the mechanisms for the second peak of the NIO warming using observations and general circulation models. This analysis reveals that internal air–sea interaction within the TIO is key to sustaining the TIO warming through summer. During El Niño, anticyclonic wind curl anomalies force a downwelling Rossby wave in the south TIO through Walker circulation adjustments, causing a sustained SST warming in the tropical southwest IO (SWIO) where the mean thermocline is shallow. During the spring and early summer following El Niño, this SWIO warming sustains an antisymmetric pattern of atmospheric anomalies with northeasterly (northwesterly) wind anomalies north (south) of the equator. Over the NIO as the mean winds turn into southwesterly in May, the northeasterly anomalies force the second SST peak that persists through summer by reducing the wind speed and surface evaporation. Atmospheric general circulation model experiments show that the antisymmetric atmospheric pattern is a response to the TIO warming, suggestive of their mutual interaction. Thus, ocean dynamics and Rossby waves in particular are important for the warming not only locally in SWIO but also on the basin-scale north of the equator, a result with important implications for climate predictability and prediction.

Corresponding author address: Yan Du, Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Rd., Guangzhou 510301, China. Email: duyan@scsio.ac.cn

Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and R. Murtugudde, 2004: Role of the Indian Ocean in regional climate variability. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 213–246.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., P. Liu, and S-P. Xie, 2005a: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18 , 41504167.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005b: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18 , 302319.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28 , 327330.

  • Behera, S. K., P. S. Salvekar, and T. Yamagata, 2000: Simulation of interannual SST variability in the tropical Indian Ocean. J. Climate, 13 , 34873499.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled system— The role of ocean dynamics. J. Climate, 19 , 51225174.

    • Search Google Scholar
    • Export Citation
  • Chen, J-M., T. Li, and C-F. Shih, 2007: Fall persistence barrier of sea surface temperature in the South China Sea associated with ENSO. J. Climate, 20 , 158172.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15 , 26162631.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Y. Tanimoto, 2005: Role of specific humidity anomalies in Caribbean SST response to ENSO. J. Meteor. Soc. Japan, 83 , 959975.

    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2007: Mechanisms of summertime subtropical southern Indian Ocean sea surface temperature variability: On the importance of humidity anomalies and the meridional advection of water vapor. J. Climate, 20 , 48354852.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., C. Gnanaseelan, and S. P. Xie, 2009: Westward propagation of barrier layer formation in the 2006-07 Rossby wave event over the tropical southwest Indian Ocean. Geophys. Res. Lett., 36 , L04607. doi:10.1029/2008GL036642.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., S-P. Xie, T. Miyama, K. J. Richards, and R. J. O. Small, 2007: What maintains the SST front north of the eastern Pacific equatorial cold tongue? J. Climate, 20 , 25002514.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., V. Semenov, and M. Latif, 2006: Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys. Res. Lett., 33 , L11701. doi:10.1029/2006GL025871.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and S-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35 , L08712. doi:10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Du, Y., T. Qu, and G. Meyers, 2008: Interannual variability of the sea surface temperature off Java and Sumatra in a global GCM. J. Climate, 21 , 24512465.

    • Search Google Scholar
    • Export Citation
  • Han, W., D. Yuan, W. T. Liu, and D. J. Halkides, 2007: Intraseasonal variability of Indian Ocean sea surface temperature during boreal winter: Madden–Julian Oscillation versus submonthly forcing and processes. J. Geophys. Res., 112 , C04001. doi:10.1029/2006JC003791.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107 , 3199. doi:10.1029/2001JC001278.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., C. de Boyer Montégut, J-J. Luo, S. K. Behera, S. Masson, and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21 , 56035623.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kawamura, R., T. Matsuura, and S. Iizuka, 2001: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Niño–Southern Oscillation coupling. J. Geophys. Res., 106 , 46814693.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., and I-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19 , 17841801.

  • Lau, N-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13 , 42874309.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16 , 320.

  • Liu, Q., X. Jiang, S-P. Xie, and W. T. Liu, 2004: A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability. J. Geophys. Res., 109 , C07012. doi:10.1029/2003JC002179.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103 , 2758927602.

  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simulator, 1 , 3556.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary Jr., and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105 , 32953306.

    • Search Google Scholar
    • Export Citation
  • Périgaud, C., and P. Delecluse, 1992: Annual sea level variations in the southern tropical Indian Ocean from Geosat and shallow-water simulations. J. Geophys. Res., 97 , 2016920178.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and S. K. Behera, 2005: Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dyn. Atmos. Oceans, 39 , 103135.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max-Planck-Institut für Meteorologie Tech. Rep. 349, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, Eds., Springer, 157–185.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1985: ISCCP global radiance data set: A new resource for climate research. Bull. Amer. Meteor. Soc., 66 , 14981505.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47 , RG1002. doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., M. A. Alexander, and H. H. Hendon, 2004: Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate, 17 , 362372.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., and Y. Tanimoto, 2004: Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean dipole years. J. Meteor. Soc. Japan, 82 , 10071018.

    • Search Google Scholar
    • Export Citation
  • Wang, C., W. Wang, D. Wang, and Q. Wang, 2006: Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res., 111 , C03023. doi:10.1029/2005JC003333.

    • Search Google Scholar
    • Export Citation
  • Wang, L., C. J. Koblinsky, and S. Howden, 2001: Annual Rossby wave in the southern Indian Ocean: Why does it “appear” to break down in the middle ocean? J. Phys. Oceanogr., 31 , 5474.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F-F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29 , 1478. doi:10.1029/2001GL014318.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 1979: A statistical study of the relationships between ocean surface temperatures and the Indian monsoon. J. Atmos. Sci., 36 , 22792291.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17 , 40194031.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113 , D05104. doi:10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A , 340350.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., H. Annamalai, F. Schott, and J. P. McCreary Jr., 2002: Origin and predictability of South Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., Q. Xie, D. X. Wang, and W. T. Liu, 2003: Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res., 108 , 3261. doi:10.1029/2003JC001867.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., K. Hu, J. Hafner, Y. Du, G. Huang, and H. Tokinaga, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22 , 730747.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, J. J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–211.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34 , L02708. doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yokoi, T., T. Tozuka, and T. Yamagata, 2008: Seasonal variation of the Seychelles Dome. J. Climate, 21 , 37403754.

  • Yu, L., and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys. Res. Lett., 26 , 735738.

    • Search Google Scholar
    • Export Citation
  • Yu, W., B. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32 , L24706. doi:10.1029/2005GL024327.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7 , 17191736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2751 1089 76
PDF Downloads 1881 507 45