Arctic Cloud Fraction and Radiative Fluxes in Atmospheric Reanalyses

John E. Walsh International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by John E. Walsh in
Current site
Google Scholar
PubMed
Close
,
William L. Chapman Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by William L. Chapman in
Current site
Google Scholar
PubMed
Close
, and
Diane H. Portis Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Diane H. Portis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Arctic radiative fluxes, cloud fraction, and cloud radiative forcing are evaluated from four currently available reanalysis models using data from the North Slope of Alaska (NSA) Barrow site of the Atmospheric Radiation Measurement Program (ARM). A primary objective of the ARM–NSA program is to provide a high-resolution dataset of direct measurements of Arctic clouds and radiation so that global climate models can better parameterize high-latitude cloud radiative processes. The four reanalysis models used in this study are the 1) NCEP–NCAR global reanalysis, 2) 40-yr ECMWF Re-Analysis (ERA-40), 3) NCEP–NCAR North American Regional Reanalysis (NARR), and 4) Japan Meteorological Agency and Central Research Institute of Electric Power Industry 25-yr Reanalysis (JRA25). The reanalysis models simulate the radiative fluxes well if/when the cloud fraction is simulated correctly. However, the systematic errors of climatological reanalysis cloud fractions are substantial. Cloud fraction and radiation biases show considerable scatter, both in the annual mean and over a seasonal cycle, when compared to those observed at the ARM–NSA. Large seasonal cloud fraction biases have significant impacts on the surface energy budget. Detailed comparisons of ARM and reanalysis products reveal that the persistent low-level cloud fraction in summer is particularly difficult for the reanalysis models to capture creating biases in the shortwave radiation flux that can exceed 160 W m−2. ERA-40 is the best performer in both shortwave and longwave flux seasonal representations at Barrow, largely because its simulation of the cloud coverage is the most realistic of the four reanalyses. Only two reanalyses (ERA-40 and NARR) capture the observed transition from positive to negative surface net cloud radiative forcing during a 2–3-month period in summer, while the remaining reanalyses indicate a net warming impact of Arctic clouds on the surface energy budget throughout the entire year. The authors present a variable cloud radiative forcing metric to diagnose the erroneous impact of reanalysis cloud fraction on the surface energy balance. The misrepresentations of cloud radiative forcing in some of the reanalyses are attributable to errors in both simulated cloud amounts and the models’ radiative response to partly cloudy conditions.

Corresponding author address: John E. Walsh, International Arctic Research Center, University of Alaska Fairbanks, 930 Koyukuk Drive, Fairbanks, AK 99775-7350. Email: jwalsh@iarc.uaf.edu

Abstract

Arctic radiative fluxes, cloud fraction, and cloud radiative forcing are evaluated from four currently available reanalysis models using data from the North Slope of Alaska (NSA) Barrow site of the Atmospheric Radiation Measurement Program (ARM). A primary objective of the ARM–NSA program is to provide a high-resolution dataset of direct measurements of Arctic clouds and radiation so that global climate models can better parameterize high-latitude cloud radiative processes. The four reanalysis models used in this study are the 1) NCEP–NCAR global reanalysis, 2) 40-yr ECMWF Re-Analysis (ERA-40), 3) NCEP–NCAR North American Regional Reanalysis (NARR), and 4) Japan Meteorological Agency and Central Research Institute of Electric Power Industry 25-yr Reanalysis (JRA25). The reanalysis models simulate the radiative fluxes well if/when the cloud fraction is simulated correctly. However, the systematic errors of climatological reanalysis cloud fractions are substantial. Cloud fraction and radiation biases show considerable scatter, both in the annual mean and over a seasonal cycle, when compared to those observed at the ARM–NSA. Large seasonal cloud fraction biases have significant impacts on the surface energy budget. Detailed comparisons of ARM and reanalysis products reveal that the persistent low-level cloud fraction in summer is particularly difficult for the reanalysis models to capture creating biases in the shortwave radiation flux that can exceed 160 W m−2. ERA-40 is the best performer in both shortwave and longwave flux seasonal representations at Barrow, largely because its simulation of the cloud coverage is the most realistic of the four reanalyses. Only two reanalyses (ERA-40 and NARR) capture the observed transition from positive to negative surface net cloud radiative forcing during a 2–3-month period in summer, while the remaining reanalyses indicate a net warming impact of Arctic clouds on the surface energy budget throughout the entire year. The authors present a variable cloud radiative forcing metric to diagnose the erroneous impact of reanalysis cloud fraction on the surface energy balance. The misrepresentations of cloud radiative forcing in some of the reanalyses are attributable to errors in both simulated cloud amounts and the models’ radiative response to partly cloudy conditions.

Corresponding author address: John E. Walsh, International Arctic Research Center, University of Alaska Fairbanks, 930 Koyukuk Drive, Fairbanks, AK 99775-7350. Email: jwalsh@iarc.uaf.edu

Save
  • Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94 , 1448514498.

    • Search Google Scholar
    • Export Citation
  • Anisimov, O. A., D. G. Vaughan, T. V. Callaghan, C. Furgal, H. Marchant, T. D. Prowse, H. Vilhjálmsson, and J. E. Walsh, 2007: Polar regions (Arctic and Antarctica). Climate Change 2007: Impacts, Adaptation and Vulnerability, M. Parry et al., Eds., Cambridge University Press, 653–685.

    • Search Google Scholar
    • Export Citation
  • Astin, I., L. Di Girolamo, and H. M. van de Poll, 2001: Bayesian confidence intervals for true fractional coverage from finite transect measurements: Implications for cloud studies from space. J. Geophys. Res., 106 , 1730317310.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., J. P. Kennett, and B. P. Flower, 1989: Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature, 318 , 318321.

    • Search Google Scholar
    • Export Citation
  • Campana, K. A., Y-T. Hou, K. E. Mitchell, S-K. Yang, and R. Cullather, 1994: Improved diagnostic cloud parameterization in NMC’s global model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 324–325.

  • Chapman, W. L., and J. E. Walsh, 2007: Simulations of Arctic temperature and pressure by global coupled models. J. Climate, 20 , 609632.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., 1995: Interactions among aerosols, clouds, and the climate of the Arctic Ocean. Sci. Total Environ., 160–161 , 777791.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and E. E. Ebert, 1992: Annual cycle of radiative fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J. Climate, 5 , 12671280.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., E. E. Ebert, and J. L. Schramm, 1993: Impact of clouds on the surface radiation balance of the Arctic Ocean. Meteor. Atmos. Phys., 51 , 197217.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, M. C. Serreze, and E. E. Ebert, 1995: Water vapor feedback over the Arctic Ocean. J. Geophys. Res., 100 , 1422314229.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9 , 17311764.

    • Search Google Scholar
    • Export Citation
  • Geleyn, J-F., and A. Hollingsworth, 1979: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr. Phys. Atmos., 52 , 116.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., J-J. Morcrette, C. Jakov, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation, and cloud schemes in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 126 , 16851710.

    • Search Google Scholar
    • Export Citation
  • Herman, G. F., 1975: Radiative-diffusive models of the Arctic boundary layer. Department of Meteorology, Massachusetts Institute of Technology Rep. 600-2195-21, 170 pp.

    • Search Google Scholar
    • Export Citation
  • Herman, G. F., and R. Goody, 1976: Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci., 33 , 15371553.

  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Huschke, R. E., 1969: Arctic Cloud Statistics from “Air-Calibrated” Surface Weather Observations. Rand, 79 pp.

  • Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L. Andreas, P. S. Guest, and R. E. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107 , 8039. doi:10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and S. A. Klein, 2000: A parameterization of the effects of cloud and precipitation overlap for use in general-circulation models. Quart. J. Roy. Meteor. Soc., 126 , 25252544.

    • Search Google Scholar
    • Export Citation
  • Japan Meteorological Agency, 2002: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Numerical Weather Prediction Progress Rep., 158 pp.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kattsov, V., and E. Källen, 2005: Future climate change: Modeling and scenarios for the Arctic. Arctic Climate Impact Assessment, J. Berner et al., Eds., Cambridge University Press, 99–150.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization of the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31 , 118133.

    • Search Google Scholar
    • Export Citation
  • McInnes, K. L., and J. A. Curry, 1995a: Modeling the mean and turbulent structure of the summertime Arctic cloudy boundary layer. Bound.-Layer Meteor., 73 , 125143.

    • Search Google Scholar
    • Export Citation
  • McInnes, K. L., and J. A. Curry, 1995b: Life cycles of summertime Arctic stratus clouds. Preprints, Fourth Conf. on Polar Meteorology and Oceanography, Dallas, TX, Amer. Meteor. Soc., J12.1–J12.3.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85 , 369432.

  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35 , L11501. doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., 1998: Effective longwave cloud fraction and maximum-random overlap of clouds: A problem and a solution. Mon. Wea. Rev., 126 , 33363340.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 1998: Status of and outlook for large-scale modeling of atmosphere–ice–ocean interactions in the Arctic. Bull. Amer. Meteor. Soc., 79 , 197219.

    • Search Google Scholar
    • Export Citation
  • Schlatter, T. W., 2000: Variational assimilation of meteorological observations in the lower atmosphere: A tutorial on how it works. J. Atmos. Sol. Terr. Phys., 62 , 10571070.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., and J. R. Key, 1994: Arctic Ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983–1990. J. Appl. Meteor., 33 , 948963.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., J. Zhang, R. W. Lindsay, and M. Steele, 2008: Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophys. Res. Lett., 35 , L10503. doi:10.1029/2008GL033463.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17 , 616628.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water contents in a general circulation model. Quart. J. Roy. Meteor. Soc., 116 , 435460.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–91.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., R. G. Ellingson, J. A. Curry, J. E. Walsh, and B. D. Zak, 1999: Review of science issues, deployment strategy, and status for the ARM North Slope of Alaska–Adjacent Arctic Ocean climate research site. J. Climate, 12 , 4663.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. E., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34 , L09501. doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., E. Berge, and J. E. Kristjánsson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117 , 16411657.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., 1997: Simulation of fog with the ECMWF prognostic cloud scheme. European Centre for Medium-Range Weather Forecasts Tech. Memo. 225, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121 , 30403061.

  • Tsay, S-C., and K. Jayaweera, 1984: Physical characteristics of Arctic stratus clouds. J. Climate Appl. Meteor., 23 , 584596.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88 , 205221.

  • Walsh, J. E., and W. L. Chapman, 1998: Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Climate, 11 , 30303045.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., S. J. Vavrus, and W. L. Chapman, 2005: Workshop on Modeling of the Arctic Atmosphere. Bull. Amer. Meteor. Soc., 86 , 845852.

    • Search Google Scholar
    • Export Citation
  • Walter, K. M., S. A. Zimov, J. P. Chanton, D. Verbyla, and F. S. Chapin III, 2006: Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 443 , 7175.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note NCAR/TN-317+STR, 41 pp. [Available online at http://www.ucar.edu/library/collections/technotes/technotes.jsp.].

    • Search Google Scholar
    • Export Citation
  • Wilson, D., and D. Gregory, 2003: The behavior of large-scale model cloud schemes under idealized forcing scenarios. Quart. J. Roy. Meteor. Soc., 129 , 967986.

    • Search Google Scholar
    • Export Citation
  • Wyser, K., C. Jones, R. Döscher, and H. E. Meier, 2006: Comparison of modeled and observed clouds and radiation in the Arctic. Global Implications of Arctic Climate Processes and Feedbacks: Report of the Arctic Climate Workshop, Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany in September 2005, A. Rinke and K. Dethloff, Eds., Alfred Wegener Institute for Polar and Marine Research, 139–143.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1996: Evaluation of statistically based cloudiness parameterizations used in climate models. J. Atmos. Sci., 53 , 31033119.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., K. Stamnes, and S. A. Bowling, 1996: Impact of clouds on surface radiative fluxes and snowmelt at high latitudes. J. Climate, 9 , 21102123.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., T. L. Black, and M. E. Baldwin, 1997: Implementation of the cloud prediction scheme in the ETA model at NCEP. Wea. Forecasting, 12 , 697712.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1151 560 16
PDF Downloads 414 115 6