• An, S-I., , and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13 , 20442055.

    • Search Google Scholar
    • Export Citation
  • Barsugli, B., , and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., , J. D. Neelin, , and D. Gutzler, 1997: Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10 , 14731486.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR community climate model. J. Geophys. Res., 97 , 76037612.

    • Search Google Scholar
    • Export Citation
  • Burgman, R. J., , and P. S. Schopf, 2006: A simple mechanism for ENSO residuals and asymmetry. J. Climate, 19 , 31673179.

  • Cane, M. A., , M. Munnich, , and S. E. Zebiak, 1990: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part I: Linear analysis. J. Atmos. Sci., 47 , 15621577.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., , A. Wittenberg, , and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15 , 274298.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , G. Chepurin, , and X. Cao, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30 , 311326.

    • Search Google Scholar
    • Export Citation
  • Chen, T-S., , and M. Murakami, 1988: The 30–50 day variation of convective activity over the western Pacific Ocean with emphasis on the northwestern region. Mon. Wea. Rev., 116 , 892906.

    • Search Google Scholar
    • Export Citation
  • Cobb, K., , C. Charles, , H. Cheng, , and R. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424 , 271276.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2005: El Niño- or La Niña-like climate change? Climate Dyn., 24 , 89104.

  • D’Arrigo, R., , E. R. Cook, , R. J. Wilson, , R. Allan, , and M. E. Mann, 2005: On the variability of ENSO over the past six centuries. Geophys. Res. Lett., 32 , L03711. doi:10.1029/2004GL022055.

    • Search Google Scholar
    • Export Citation
  • DeWitt, D. G., 1996: The effect of the cumulus convection on the climate of the COLA general circulation model. COLA Tech. Rep. 27, 69 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • DeWitt, D. G., , and E. K. Schneider, 1996: The Earth radiation budget as simulated by the COLA GCM. COLA Tech. Rep. 35, 39 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., , L. S. Yu, , and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18 , 52245238.

  • Flügel, M., , and P. Chang, 1996: Impact of dynamical and stochastic processes on the predictability of ENSO. Geophys. Res. Lett., 21 , 20892092.

    • Search Google Scholar
    • Export Citation
  • Flügel, M., , P. Chang, , and C. Penland, 2004: The role of stochastic forcing in modulating ENSO predictability. J. Climate, 17 , 31253140.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gu, D. F., , and G. H. Philander, 1997: Interdecadal fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 6 , 329348.

  • Guilyardi, E., , P. Delecluse, , S. Gualdi, , and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., , J. D. Neelin, , and F-F. Jin, 1993: Nonlinear tropical air–sea interaction in the fast-wave limit. J. Climate, 6 , 15231544.

  • Harshvardhan, R. Davis, , D. A. Randall, , and T. G. Corsetti, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res., 92 , 10091016.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., , J. D. Neelin, , and M. Ghil, 1994: El Niño on the Devil’s Staircase: Annual subharmonic steps to chaos. Science, 264 , 7072.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W. S., , and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13 , 35603575.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , and B. P. Briegleb, 1994: The simulated Earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J. Geophys. Res., 99 , 2081520827.

    • Search Google Scholar
    • Export Citation
  • Kinter III, J. L., , J. Shukla, , L. Marx, , and E. K. Schneider, 1988: A simulation of winter and summer circulations with the NMC global spectral model. J. Atmos. Sci., 45 , 24682522.

    • Search Google Scholar
    • Export Citation
  • Kinter III, J. L., and Coauthors, 1997: The COLA atmosphere-biosphere general circulation model. Formulation, Vol. 1, COLA Tech. Rep. 51, 46 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10 , 16901704.

  • Kirtman, B. P., 2003: The COLA anomaly coupled model: Ensemble ENSO prediction. Mon. Wea. Rev., 131 , 23242341.

  • Kirtman, B. P., , and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kirtman, B. P., , and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for GCMs. Geophys. Res. Lett., 29 , 1367. doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., , J. Shukla, , B. Huang, , Z. Zhu, , and E. K. Schneider, 1997: Multiseasonal predictions with a coupled tropical ocean–global atmosphere system. Mon. Wea. Rev., 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., , Y. Fan, , and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., , and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54 , 753767.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , S. Manabe, , and D. Gu, 1997: Simulated ENSO in a global coupled ocean–atmosphere model: Multidecadal amplitude modulation and CO2 sensitivity. J. Climate, 10 , 138161.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , and M. P. Hoerling, 1998: Specification of regional sea surface temperature in atmospheric general circulation model simulations. J. Geophys. Res., 103 , (D8). 89018907.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., , and P. H. Chan, 1985: Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon. Wea. Rev., 113 , 18891909.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , Y. Liu, , L. Wu, , and R. Jacob, 2007: Seasonal and long-term atmosphere response to reemerging North Pacific Ocean variability: A combined dynamical and statistical assessment. J. Climate, 20 , 955980.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85 , 677695.

  • McPhaden, M. J., , X. Zhang, , H. H. Hendon, , and M. C. Wheeler, 2006: Large scale dynamics and MJO forcing of ENSO variability. Geophys. Res. Lett., 33 , L16702. doi:10.1029/2006GL026786.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Miyakoda, K., , and J. Sirutis, 1977: Comparative integrations of global spectral models with various parameterized processes of sub-grid scale vertical transports. Beitr. Phys. Atmos., 50 , 445480.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., , and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122 , 14051446.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., , and R. Kleeman, 1999a: The nonnormal nature of El Niño and intraseasonal variability. J. Climate, 12 , 29652982.

  • Moore, A. M., , and R. Kleeman, 1999b: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12 , 11991220.

  • Moorthi, S., , and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48 , 584606.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and H. A. Dijkstra, 1995: Ocean–atmosphere interaction and the tropical climatology. Part I: The dangers of flux correction. J. Climate, 8 , 13251342.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., , and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, 668 pp.

  • Penland, C., , and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Perez, C. L., , A. M. Moore, , J. Zavala-Garay, , and R. Kleeman, 2005: A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J. Climate, 18 , 50665085.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., , T. P. Barnett, , and M. Latif, 2000: Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J. Climate, 13 , 11731194.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopychnal mixing by coordinate rotation. J. Phys. Oceanogr., 12 , 11551158.

  • Roulston, M., , and J. D. Neelin, 2000: The response of an ENSO model to climate noise, weather noise and intraseasonal forcing. Geophys. Res. Lett., 27 , 37233726.

    • Search Google Scholar
    • Export Citation
  • Schneider, E., 2002: Understanding differences between the equatorial Pacific as simulated by two coupled GCMs. J. Climate, 15 , 449469.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Suarez, M., , and P. S. Schopf, 1988: A delayed action oscillation for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Thompson, C. J., , and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • Trenberth, K. E., , and D. J. Shea, 1987: On the evolution of the Southern Oscillation. Mon. Wea. Rev., 115 , 30783096.

  • Trenberth, K. E., , W. G. Large, , and J. G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20 , 17421760.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., , and L. Yu, 2007: Quantifying the dependence of westerly wind bursts on the large-scale equatorial Pacific SST. J. Climate, 20 , 27602768.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., , L. Stone, , M. A. Cane, , and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science, 264 , 7274.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., , M. A. Cane, , and S. E. Zebiak, 1995: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. J. Atmos. Sci., 52 , 293306.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J. S., , Y. Philp, , and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1 , 8195.

  • Vecchi, G. A., , and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13 , 18141830.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8 , 267285.

  • Wang, B., , A. Barcilon, , and Z. Fang, 1999: Stochastic dynamics of El Niño–Southern Oscillation. J. Atmos. Sci., 56 , 523.

  • Wu, L., , Z. Liu, , and H. E. Hurlburt, 2000: Kelvin wave and Rossby wave interaction in the extratropical-tropical Pacific. Geophys. Res. Lett., 27 , 12591262.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , D-E. Lee, , and Z. Liu, 2005: The 1976/77 North Pacific climate regime shift: The role of subtropical ocean adjustment and coupled ocean–atmosphere feedbacks. J. Climate, 18 , 51255140.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , Z. Liu, , C. Li, , and Y. Sun, 2007: Extratropical control of recent tropical Pacific climate variability: A relay teleconnection. Climate Dyn., 28 , 99112.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. P. Kirtman, 2004: Impact of the Indian Ocean on the Indian summer monsoon–ENSO relationship. J. Climate, 17 , 30373054.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. P. Kirtman, 2005: Near-annual SST variability in the equatorial Pacific in a coupled general circulation model. J. Climate, 18 , 44544473.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. P. Kirtman, 2006: Changes in spread and predictability associated with ENSO in an ensemble coupled GCM. J. Climate, 19 , 43784396.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , B. P. Kirtman, , and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19 , 49144932.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., , and B. P. Kirtman, 2004: Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J. Geophys. Res., 109 , C11009. doi:10.1029/2004JC002442.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., , and B. P. Kirtman, 2007: ENSO amplitude changes due to climate change projections in different coupled models. J. Climate, 20 , 203217.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., , J-G. Jhun, , I-S. Kang, , and B. P. Kirtman, 2004: The decadal ENSO variability in a hybrid coupled model. J. Climate, 17 , 12251238.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., , B. P. Kirtman, , and S-I. An, 2007: Local versus non-local atmospheric weather noise and the North Pacific SST variability. Geophys. Res. Lett., 34 , L14706. doi:10.1029/2007GL030206.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , R. A. Weller, , and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108 , 3128. doi:10.1029/2002JC001498.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zelle, H., , G. J. van Oldenborgh, , G. Burgers, , and H. Dijkstra, 2005: El Niño and greenhouse warming: Results from ensemble simulations with the NCAR CCSM. J. Climate, 18 , 46694683.

    • Search Google Scholar
    • Export Citation
  • Zhang, R-H., , and D. G. DeWitt, 2006: Response of tropical Pacific interannual variability to decadal entrainment temperature change in a hybrid coupled model. Geophys. Res. Lett., 33 , L08611. doi:10.1029/2005GL025286.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 1
PDF Downloads 13 13 1

Internal Atmospheric Variability and Interannual-to-Decadal ENSO Variability in a CGCM

View More View Less
  • 1 Korea Ocean Research and Development Institute, Ansan, South Korea
  • | 2 University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
© Get Permissions
Restricted access

Abstract

The interactive ensemble coupling strategy has been developed specifically to determine how noise due to internal atmosphere dynamics impacts climate variability within the context of coupled general circulation models (CGCMs). In this study the authors investigate the impact of internal atmospheric variability on the ENSO variability using four CGCM simulations. In the control simulation, the interactive ensemble strategy is applied globally, thereby reducing the noise at the air–sea interface at each ocean grid point. In the second and third CGCM simulations, the interactive ensemble strategy is applied locally in the extratropics versus the tropics only, respectively. In addition, those results were compared with a standard CGCM.

The results suggest that tropical internal atmospheric variability strengthens the interannual-to-decadal ENSO variability and leads to a broader spectral peak. However, the noise due to internal atmospheric dynamics plays different roles when the interannual and decadal ENSO variability is considered separately. There are noise-induced changes in the SST–zonal wind stress feedbacks from interannual to decadal time scales. The tropical atmospheric internal variability largely modifies the frequency as opposed to the amplitude of the ENSO variability on interannual time scales. In contrast, tropical internal atmospheric variability is effective in forcing decadal ENSO variability, resulting in a significant decrease of decadal ENSO amplitude in the central tropical Pacific in a CGCM when the noise is reduced. The authors argue that the decadal ENSO variability is directly affected by the low-frequency noise over the western part of the tropical Pacific in a linear sense. On the other hand, the impact of extratropical atmospheric noise on the ENSO variability is weaker than the noise in the tropics.

Corresponding author address: Sang-Wook Yeh, Korea Ocean Research and Development Institute, 1270 SA2 Dong, Ansan, 426-744, South Korea. Email: swyeh@kordi.re.kr

Abstract

The interactive ensemble coupling strategy has been developed specifically to determine how noise due to internal atmosphere dynamics impacts climate variability within the context of coupled general circulation models (CGCMs). In this study the authors investigate the impact of internal atmospheric variability on the ENSO variability using four CGCM simulations. In the control simulation, the interactive ensemble strategy is applied globally, thereby reducing the noise at the air–sea interface at each ocean grid point. In the second and third CGCM simulations, the interactive ensemble strategy is applied locally in the extratropics versus the tropics only, respectively. In addition, those results were compared with a standard CGCM.

The results suggest that tropical internal atmospheric variability strengthens the interannual-to-decadal ENSO variability and leads to a broader spectral peak. However, the noise due to internal atmospheric dynamics plays different roles when the interannual and decadal ENSO variability is considered separately. There are noise-induced changes in the SST–zonal wind stress feedbacks from interannual to decadal time scales. The tropical atmospheric internal variability largely modifies the frequency as opposed to the amplitude of the ENSO variability on interannual time scales. In contrast, tropical internal atmospheric variability is effective in forcing decadal ENSO variability, resulting in a significant decrease of decadal ENSO amplitude in the central tropical Pacific in a CGCM when the noise is reduced. The authors argue that the decadal ENSO variability is directly affected by the low-frequency noise over the western part of the tropical Pacific in a linear sense. On the other hand, the impact of extratropical atmospheric noise on the ENSO variability is weaker than the noise in the tropics.

Corresponding author address: Sang-Wook Yeh, Korea Ocean Research and Development Institute, 1270 SA2 Dong, Ansan, 426-744, South Korea. Email: swyeh@kordi.re.kr

Save