• Aiyyer, A. R., , and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19 , 29692983.

  • Avila, L. A., 1991: Atlantic tropical systems of 1990. Mon. Wea. Rev., 119 , 20272033.

  • Avila, L. A., , and G. B. Clark, 1989: Atlantic tropical systems of 1988. Mon. Wea. Rev., 117 , 22602265.

  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54 , 703724.

    • Search Google Scholar
    • Export Citation
  • Bove, M. C., , J. B. Elsner, , C. W. Landsea, , X. Niu, , and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79 , 24772482.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40 , 16891708.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15 , 18931910.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20 , 48194834.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53 , 20762087.

  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Frank, W. M., , and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127 , 20442061.

  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., , and L. J. Shapiro, 1996: Physical mechanism for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9 , 11691187.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., , C. W. Landsea, , A. M. Mestas-Nuñez, , and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293 , 474479.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation influences. Mon. Wea. Rev., 112 , 16491668.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1990: Strong association between West African rainfall and U.S. landfall of intense hurricanes. Science, 249 , 12511256.

  • Held, I. M., , and I-S. Kang, 1987: Barotropic models of the extratropical response to El Niño. J. Atmos. Sci., 44 , 35763586.

  • Held, I. M., , S. W. Lyons, , and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46 , 163174.

  • Hoerling, M. P., , and M. Ting, 1994: Organization of extratropical transients during El Niño. J. Climate, 7 , 745766.

  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., , and P. Xie, 1999: CAMS–OPI: A global satellite–rain gauge merged product for real-time precipitation monitoring applications. J. Climate, 12 , 33353342.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kaplan, A., , M. A. Cane, , Y. Kushnir, , A. C. Clement, , M. B. Blumenthal, , and B. Rajagopolan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby-wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7 , 111125.

  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121 , 17031713.

  • Landsea, C. W., , and W. M. Gray, 1992: The strong association between western Sahelian monsoon rainfall and intense Atlantic hurricanes. J. Climate, 5 , 435453.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., , W. M. Gray, , P. W. Mielke Jr., , and K. J. Berry, 1992: Long-term variations of western Sahelian monsoon rainfall and intense U.S. landfalling hurricanes. J. Climate, 5 , 15281534.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic Hurricane Database Re-Analysis Project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and J. Shaman, 2008: Intraseasonal variability of the West African monsoon and Atlantic ITCZ. J. Climate, 21 , 28982918.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., , and E. DeWeaver, 1998: Influence of orography on the extratropical response to El Niño events. J. Climate, 11 , 716733.

  • Nolan, D. S., , E. D. Rappin, , and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative convective equilibrium. Quart. J. Roy. Meteor. Soc., 133 , 20852107.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., , and L. A. Avila, 1994: Atlantic tropical systems of 1992. Mon. Wea. Rev., 122 , 539548.

  • Paterson, L. A., , B. N. Hanstrum, , N. E. Davidson, , and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133 , 36443660.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61 , 322.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., , and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., , and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth and the South Asian monsoons: A stationary wave teleconnection mechanism. J. Climate, 18 , 20672079.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., , and E. Tziperman, 2007: The summertime ENSO–North African–Asian jet teleconnection and implications for the Indian monsoons. Geophys. Res. Lett., 34 , L11702. doi:10.1029/2006GL029143.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1982a: Hurricane climatic fluctuations. Part I: Patterns and cycles. Mon. Wea. Rev., 110 , 10071013.

  • Shapiro, L. J., 1982b: Hurricane climatic fluctuations. Part II: Relation to large-scale circulation. Mon. Wea. Rev., 110 , 10141023.

  • Shapiro, L. J., 1987: Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm formation. Mon. Wea. Rev., 115 , 25982614.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1989: The relationship of the quasi-biennial oscillation to Atlantic tropical storm activity. Mon. Wea. Rev., 117 , 15451552.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1992: Hurricane vortex motion and evolution in a three-layer model. J. Atmos. Sci., 49 , 140153.

  • Simmons, A. J., , J. M. Wallace, , and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40 , 13631392.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , G. W. Branstator, , D. Karoly, , A. Kumar, , N-C. Lau, , and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34 , L08702. doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , G. J. Holland, , J. A. Curry, , and H-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 , 18441846.

    • Search Google Scholar
    • Export Citation
  • Wilson, R. M., 1999: Statistical aspects of major (intense) hurricanes in the Atlantic basin during the past 49 hurricane seasons (1950–1998): Implications for the current season. Geophys. Res. Lett., 26 , 29572960.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., , and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50 , 6276.

    • Search Google Scholar
    • Export Citation
  • Wu, C-C., , and K. A. Emanuel, 1994: On hurricane outflow structure. J. Atmos. Sci., 51 , 19952003.

  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 26
PDF Downloads 79 79 23

The Dynamics of the ENSO–Atlantic Hurricane Teleconnection: ENSO-Related Changes to the North African–Asian Jet Affect Atlantic Basin Tropical Cyclogenesis

View More View Less
  • 1 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

The nature of the teleconnection linking ENSO variability with Atlantic basin tropical storm formation is investigated. Solutions of the linearized barotropic vorticity equation forced with August–October El Niño event divergence produce upper-tropospheric vorticity anomalies over the Sahel and at the mouth of the North African–Asian (NAA) jet over the tropical Atlantic. These responses are similar in magnitude and orientation to observed ENSO vorticity variability for this region.

Further investigation reveals that the vorticity anomalies over the subtropical Atlantic develop primarily in response to very low wavenumber, westward-propagating stationary Rossby waves excited by El Niño–related convective activity over the equatorial Pacific Ocean. However, the dynamics of this teleconnection change as the Atlantic basin hurricane season progresses. In August and September the response is dominated by the westward-propagating stationary Rossby waves that alter vorticity within the NAA jet and to its south. The upper-tropospheric nondivergent zonal wind anomalies produced by these vorticity anomalies are similar in pattern to observed zonal wind and vertical zonal wind shear anomalies, which suppress Atlantic basin tropical cyclogenesis.

By October, eastward-propagating signals also develop over the tropical Atlantic Ocean in response to El Niño conditions. Over the main development region of Atlantic basin tropical cyclogenesis, these eastward-propagating Rossby waves appear to destructively interfere with the vorticity changes produced by the westward-propagating Rossby waves within the NAA jet. In addition, the NAA jet has shifted south by October. Consequently, the resultant upper-tropospheric nondivergent zonal wind perturbations for October are weak and suggest that ENSO should have little effect on rates of Atlantic basin tropical cyclogenesis during October. Statistical analyses of monthly ENSO-related changes in Atlantic basin tropical storm formation support this hypothesis.

Corresponding author address: Jeffrey Shaman, 104 COAS Admin. Building, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331. Email: jshaman@coas.oregonstate.edu

Abstract

The nature of the teleconnection linking ENSO variability with Atlantic basin tropical storm formation is investigated. Solutions of the linearized barotropic vorticity equation forced with August–October El Niño event divergence produce upper-tropospheric vorticity anomalies over the Sahel and at the mouth of the North African–Asian (NAA) jet over the tropical Atlantic. These responses are similar in magnitude and orientation to observed ENSO vorticity variability for this region.

Further investigation reveals that the vorticity anomalies over the subtropical Atlantic develop primarily in response to very low wavenumber, westward-propagating stationary Rossby waves excited by El Niño–related convective activity over the equatorial Pacific Ocean. However, the dynamics of this teleconnection change as the Atlantic basin hurricane season progresses. In August and September the response is dominated by the westward-propagating stationary Rossby waves that alter vorticity within the NAA jet and to its south. The upper-tropospheric nondivergent zonal wind anomalies produced by these vorticity anomalies are similar in pattern to observed zonal wind and vertical zonal wind shear anomalies, which suppress Atlantic basin tropical cyclogenesis.

By October, eastward-propagating signals also develop over the tropical Atlantic Ocean in response to El Niño conditions. Over the main development region of Atlantic basin tropical cyclogenesis, these eastward-propagating Rossby waves appear to destructively interfere with the vorticity changes produced by the westward-propagating Rossby waves within the NAA jet. In addition, the NAA jet has shifted south by October. Consequently, the resultant upper-tropospheric nondivergent zonal wind perturbations for October are weak and suggest that ENSO should have little effect on rates of Atlantic basin tropical cyclogenesis during October. Statistical analyses of monthly ENSO-related changes in Atlantic basin tropical storm formation support this hypothesis.

Corresponding author address: Jeffrey Shaman, 104 COAS Admin. Building, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331. Email: jshaman@coas.oregonstate.edu

Save