• Barker, P. F., , and J. Burrell, 1977: The opening of Drake Passage. Mar. Geol., 25 , 1534.

  • Barker, P. F., , and E. Thomas, 2004: Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci. Rev., 66 , 143162.

    • Search Google Scholar
    • Export Citation
  • Berggren, W. A., , and C. D. Hollister, 1977: Plate tectonics and paleocirculation–commotion in the ocean. Tectonophysics, 38 , 1148.

  • Corfield, R. M., , and R. D. Norris, 1996: Deep water circulation in the Paleocene ocean. Geol. Soc. London Spec. Publ., 101 , 443456.

  • de Boer, A. M. D., , J. R. Toggweiler, , and D. M. Sigman, 2008: Atlantic dominance of the meridional overturning circulation. J. Phys. Oceanogr., 38 , 435450.

    • Search Google Scholar
    • Export Citation
  • DeConto, R. M., , and D. Pollard, 2004: Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 104 , 245249.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean general circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Huber, M., , and L. C. Sloan, 2001: Heat transport, deep waters and thermal gradients: Coupled simulation of an Eocene “greenhouse” climate. Geophys. Res. Lett., 28 , 34813484.

    • Search Google Scholar
    • Export Citation
  • Huber, M., , and D. Nof, 2006: The ocean circulation in the Southern Hemisphere and its climatic impacts in the Eocene. Palaeogeogr. Palaeoclimatol. Palaeoecol., 231 , 928.

    • Search Google Scholar
    • Export Citation
  • Huber, M., , H. Brinkhuis, , C. E. Stickley, , K. Döös, , A. Sluijs, , J. Warnaar, , S. A. Schellenberg, , and G. L. Williams, 2004: Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters? Paleoceanography, 19 , PA4026. doi:10.1029/2004PA001014.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kennett, J. P., 1977: Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J. Geophys. Res., 82 , 38433860.

    • Search Google Scholar
    • Export Citation
  • Lawver, L. A., , and L. M. Gahagan, 2003: Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol., 198 , 1138.

    • Search Google Scholar
    • Export Citation
  • Livermore, R., , A. Nankivell, , G. Eagles, , and P. Morris, 2005: Paleogene opening of Drake Passage. Earth Planet. Sci. Lett., 236 , 459470.

    • Search Google Scholar
    • Export Citation
  • Lyle, M., , J. Barron, , T. J. Bralower, , M. Huber, , A. Olivarez Lyle, , A. C. Ravelo, , D. K. Rea, , and P. A. Wilson, 2008: Pacific Ocean and Cenozoic evolution of climate. Rev. Geophys., 46 , RG2002. doi:10.1029/2005RG000190.

    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., , E. Maier-Reimer, , T. J. Crowley, , and K. Y. Kim, 1993: Effect of Drake Passage and Panamanian gateways on the circulation of an ocean model. Paleoceanography, 8 , 409426.

    • Search Google Scholar
    • Export Citation
  • Mountain, G., , and K. Miller, 1992: Seismic and geologic evidence for early paleogene deepwater circulation in the western North Atlantic. Paleoceanography, 7 , 423439.

    • Search Google Scholar
    • Export Citation
  • Najjar, R. G., , G. T. Nong, , D. Seidov, , and W. H. Peterson, 2002: Modeling geographic impacts on early Eocene ocean temperature. Geophys. Res. Lett., 29 , 1750. doi:10.1029/2001GL014438.

    • Search Google Scholar
    • Export Citation
  • Nisancioglu, K. H., , M. E. Raymo, , and P. H. Stone, 2003: Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway. Paleoceanography, 18 , 1006. doi:10.1029/2002PA000767.

    • Search Google Scholar
    • Export Citation
  • Nong, G. T., , R. G. Najjar, , D. Seidov, , and W. H. Peterson, 2000: Simulation of ocean temperature change due to the opening of Drake Passage. Geophys. Res. Lett., 27 , 26892692.

    • Search Google Scholar
    • Export Citation
  • Omta, A. W., , and H. A. Dijkstra, 2003: A physical mechanism for the Atlantic-Pacific flow reversal in the early miocene. Global Planet. Change, 36 , 265276.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., 1995: MOM2 documentation user’s guide and reference manual. NOAA GFDL Ocean Group Tech. Rep. 3, 232 pp.

  • Saenko, O. A., , A. J. Weaver, , and A. Schmittner, 2003: Atlantic deep circulation controlled by freshening in the Southern Ocean. Geophys. Res. Lett., 30 , 1754. doi:10.1029/2003GL017681.

    • Search Google Scholar
    • Export Citation
  • Saunders, A. D., , J. G. Fitton, , A. C. Kerr, , M. J. Norry, , and R. W. Kent, 1997: The North Atlantic igneous province. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Geophys. Monogr., Vol. 100, Amer. Geophys. Union, 45–93.

    • Search Google Scholar
    • Export Citation
  • Scher, H. D., , and E. E. Martin, 2008: Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes. Paleoceanography, 23 , PA1205. doi:10.1029/2006PA001400.

    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., , and M. H. England, 2004: Effect of the Drake Passage throughflow on global climate. J. Phys. Oceanogr., 34 , 12541266.

  • Sijp, W. P., , and M. H. England, 2005: On the role of the Drake Passage in controlling the stability of the ocean’s thermohaline circulation. J. Climate, 18 , 19571966.

    • Search Google Scholar
    • Export Citation
  • Stickley, C. E., and Coauthors, 2004: Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19 , PA4027. doi:10.1029/2004PA001022.

    • Search Google Scholar
    • Export Citation
  • Thomas, D. J., , M. Lyle, , T. C. Moore, , and D. K. Rea, 2008: Paleogene deepwater mass composition of the tropical Pacific and implications for thermohaline circulation in a greenhouse world. Geochem. Geophys. Geosyst., 9 , Q02002. doi:10.1029/2007GC001748.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and H. Bjornsson, 2000: Drake Passage and paleoclimate. J. Quat. Sci., 15 , 319328.

  • Via, R., , and D. Thomas, 2006: Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep-water production in the North Atlantic. Geology, 34 , 441444.

    • Search Google Scholar
    • Export Citation
  • von der Heydt, A., , and H. A. Dijkstra, 2006: Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography, 21 , PA1011. doi:10.1029/2005PA001149.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmos.–Ocean, 39 , 321428.

    • Search Google Scholar
    • Export Citation
  • Wenzel, M., , J. Schroeter, , and D. Olbers, 2001: The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation. Prog. Oceanogr., 48 , 73119.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 2
PDF Downloads 3 3 0

Atmospheric Moisture Transport Moderates Climatic Response to the Opening of Drake Passage

View More View Less
  • 1 Climate and Environmental Dynamics Laboratory, School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

The absence of the Drake Passage (DP) gateway in coupled models generally leads to vigorous Antarctic bottom water (AABW) formation, Antarctic warming, and the absence of North Atlantic deep-water (NADW) formation. Here the authors show that this result depends critically on atmospheric moisture transport by midlatitude storms. The authors use coupled model simulations employing geometries different only at the location of DP to show that oceanic circulation similar to that of the present day is possible when DP is closed and atmospheric moisture transport values enhanced by Southern Ocean storm activity are used. In this case, no Antarctic warming occurs in conjunction with DP closure. The authors also find that the changes in poleward heat transport in response to the establishment of the Antarctic Circumpolar Current (ACC) are small. This result arises from enhanced atmospheric moisture transport at the midlatitudes of the Southern Hemisphere (SH), although the values used remain within a range appropriate to the present day. In contrast, homogeneous or (near) symmetric moisture diffusivity leads to strong SH sinking and the absence of a stable Northern Hemisphere (NH) overturning state, a feature familiar from previous studies. The authors’ results show that the formation of NADW, or its precursor, may have been possible before the opening of the DP at the Eocene/Oligocene boundary, and that its presence depends on an interplay between the existence of the DP gap and the hydrological cycle across the midlatitude storm tracks.

Corresponding author address: Dr. Willem P. Sijp, Climate Change Research Centre (CCRC), University of New South Wales, Sydney, NSW 2052, Australia. Email: w.sijp@unsw.edu.au

Abstract

The absence of the Drake Passage (DP) gateway in coupled models generally leads to vigorous Antarctic bottom water (AABW) formation, Antarctic warming, and the absence of North Atlantic deep-water (NADW) formation. Here the authors show that this result depends critically on atmospheric moisture transport by midlatitude storms. The authors use coupled model simulations employing geometries different only at the location of DP to show that oceanic circulation similar to that of the present day is possible when DP is closed and atmospheric moisture transport values enhanced by Southern Ocean storm activity are used. In this case, no Antarctic warming occurs in conjunction with DP closure. The authors also find that the changes in poleward heat transport in response to the establishment of the Antarctic Circumpolar Current (ACC) are small. This result arises from enhanced atmospheric moisture transport at the midlatitudes of the Southern Hemisphere (SH), although the values used remain within a range appropriate to the present day. In contrast, homogeneous or (near) symmetric moisture diffusivity leads to strong SH sinking and the absence of a stable Northern Hemisphere (NH) overturning state, a feature familiar from previous studies. The authors’ results show that the formation of NADW, or its precursor, may have been possible before the opening of the DP at the Eocene/Oligocene boundary, and that its presence depends on an interplay between the existence of the DP gap and the hydrological cycle across the midlatitude storm tracks.

Corresponding author address: Dr. Willem P. Sijp, Climate Change Research Centre (CCRC), University of New South Wales, Sydney, NSW 2052, Australia. Email: w.sijp@unsw.edu.au

Save