• Angell, J., 1986: Annual and global seasonal temperature changes in the troposphere and low stratosphere, 1960–85. Mon. Wea. Rev., 114 , 19221930.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M., and Coauthors, 2007: Climate–ozone connections. Scientific Assessment of Ozone Depletion: 2006, World Meteorological Organization Global Ozone Research and Monitoring Project, Rep. 50, World Meteorological Organization, 5.1–5.49.

    • Search Google Scholar
    • Export Citation
  • Barnett, J. J., J. T. Houghton, and J. A. Pyle, 1975: The temperature dependence of the ozone concentration near the stratopause. Quart. J. Roy. Meteor. Soc., 101 , 245257.

    • Search Google Scholar
    • Export Citation
  • Blake, D., and R. S. Lindzen, 1973: Effect of photochemical models on calculated equilibria and cooling rates in the stratosphere. Mon. Wea. Rev., 101 , 783802.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Douglass, A. R., and R. B. Rood, 1986: Derivation of photochemical information near 1-mbar from ozone and temperature data. J. Geophys. Res., 91 , 31533166.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., and S. R. Kawa, 1999: Contrast between 1992 and 1997 high-latitude spring Halogen Occultation Experiment observations of lower stratospheric HCl. J. Geophys. Res., 104 , 1873918754.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., C. H. Jackman, and R. S. Stolarski, 1989: Comparison of model results transporting the odd nitrogen family with results transporting separate odd nitrogen species. J. Geophys. Res., 94 , (D7). 98629872.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., R. S. Stolarski, M. R. Schoeberl, C. H. Jackman, M. L. Gupta, P. A. Newman, J. E. Nielsen, and E. L. Fleming, 2008: Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes. J. Geophys. Res., 113 , D14309. doi:10.1029/2007JD009575.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1982: Detecting climate change. J. Appl. Meteor., 21 , 11721182.

  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111 , D22308. doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112 , D16303. doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Free, M., D. J. Seidel, J. K. Angell, J. Lanzante, I. Durre, and T. C. Peterson, 2005: Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new data set of large-area anomaly time series. J. Geophys. Res., 110 , D22101. doi:10.1029/2005JD006169.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., and J. A. Pyle, 1979: A two-dimensional calculation including atmospheric carbon dioxide and stratospheric ozone. Nature, 279 , 222224.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., and J. A. Pyle, 1982: Ozone perturbation experiments in a two-dimensional circulation model. Quart. J. Roy. Meteor. Soc., 108 , 551574.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2006: The new Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19 , 13271353.

    • Search Google Scholar
    • Export Citation
  • Jonsson, A. I., V. I. Fomichev, and T. G. Shepherd, 2009: An updated analysis of the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting substances and well-mixed greenhouse gases. Atmos. Chem. Phys. Discuss., 9 , 1485714872.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., B. A. Boville, and B. P. Briegleb, 1988: Response of a general circulation model to a prescribed Antarctic ozone hole. Nature, 332 , 501504.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Langematz, U., M. Kunze, K. Kruger, K. Labitzke, and G. L. Roff, 2003: Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. J. Geophys. Res., 108 , 4027. doi:10.1029/2002JD002069.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., 2007: Diagnosis of radiosonde vertical temperature trend profiles: Comparing the influence of data homogenization versus model forcings. J. Climate, 20 , 53565364.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., S. A. Klein, and D. J. Seidel, 2003a: Temporal homogenization of monthly radiosonde temperature data. Part I: Methodology. J. Climate, 16 , 224240.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., S. A. Klein, and D. J. Seidel, 2003b: Temporal homogenization of monthly radiosonde temperature data. Part II: Trends, sensitivities, and MSU comparisons. J. Climate, 16 , 241262.

    • Search Google Scholar
    • Export Citation
  • Li, F., R. S. Stolarski, and P. A. Newman, 2009: Stratospheric ozone in the post-CFC era. Atmos. Chem. Phys., 9 , 22072213.

  • Mahlman, J. D., J. P. Pinto, and L. J. Umscheid, 1994: Transport, radiative, and dynamical effects of the Antarctic ozone hole: A GFDL “SYYHI” model experiment. J. Atmos. Sci., 51 , 489508.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., and L. L. Hood, 1994: Relationship between ozone and temperature trends in the lower stratosphere: Latitude and seasonal dependences. Geophys. Res. Lett., 21 (15) 16151618.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., R. M. Nagatani, G. C. Tiao, X. F. Niu, G. C. Reinsel, D. Wuebbles, and K. Grant, 1992: Comparisons of observed ozone and temperature trends in the lower stratosphere. Geophys. Res. Lett., 19 , 929932.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and S. Swart, Eds.,. 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Newman, P. A., J. S. Daniel, D. W. Waugh, and E. R. Nash, 2007: A new formulation of equivalent effective stratospheric chlorine (EESC). Atmos. Chem. Phys., 7 , 45374552.

    • Search Google Scholar
    • Export Citation
  • Oman, L., D. W. Waugh, S. Pawson, R. S. Stolarski, and J. E. Nielsen, 2008: Understanding the changes of stratospheric water vapor in coupled Chemistry–Climate Model simulations. J. Atmos. Sci., 65 , 32783291.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., R. S. Stolarski, A. R. Douglass, P. A. Newman, J. E. Nielsen, S. M. Frith, and M. L. Guptha, 2008: Goddard Earth Observing System Chemistry Climate Model simulations of stratospheric ozone temperature coupling between 1950 and 2005. J.Geophys. Res., 113 , D12103. doi:10.1029/2007JD009511.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., M. D. Schwarzkopf, and W. J. Randel, 1996: Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature, 382 , 616618.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and J. B. Cobb, 1994: Coherent variations of monthly mean total ozone and lower stratospheric temperature. J. Geophys. Res., 99 , (D3). 54435447.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rosenfield, J. E., A. R. Douglass, and D. B. Considine, 2002: The impact of increasing carbon dioxide on ozone recovery. J. Geophys. Res., 107 , 4049. doi:10.1029/2001JD000824.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301 , 479483.

    • Search Google Scholar
    • Export Citation
  • Schauffler, S. M., and Coauthors, 2003: Chlorine budget and partitioning during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE). J. Geophys. Res., 108 , 4173. doi:10.1029/2001JD002040.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and A. I. Jonsson, 2008: On the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting substances and well-mixed greenhouse gases. Atmos. Chem. Phys., 8 , 14351444.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129 , 15651588.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., J. J. Barnett, and W. J. Randel, 2008: Temperature trends derived from stratospheric sounding unit radiances: The effect of increasing CO2 on the weighting function. Geophys. Res. Lett., 35 , L02710. doi:10.1029/2007GL032218.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., A. R. Douglass, M. Gupta, P. A. Newman, S. Pawson, M. R. Schoeberl, and J. E. Nielsen, 2006a: An ozone increase in the Antarctic summer stratosphere: A dynamical response to the ozone hole. Geophys. Res. Lett., 33 , L21805. doi:10.1029/2006GL026820.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., A. R. Douglass, S. Steenrod, and S. Pawson, 2006b: Trends in stratospheric ozone: Lessons learned from a 3D chemical transport model. J. Atmos. Sci., 63 , 10281041.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and V. Eyring, 2008: Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos. Chem. Phys., 8 , 56995713.

    • Search Google Scholar
    • Export Citation
  • WMO, 2003: Scientific Assessment of Ozone Depletion: 2002. Global Ozone Research and Monitoring Project, Rep. 47, World Meteorological Organization, 498 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 14 14 14

Relative Contribution of Greenhouse Gases and Ozone-Depleting Substances to Temperature Trends in the Stratosphere: A Chemistry–Climate Model Study

View More View Less
  • 1 Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

The temperature of the stratosphere has decreased over the past several decades. Two causes contribute to that decrease: well-mixed greenhouse gases (GHGs) and ozone-depleting substances (ODSs). This paper addresses the attribution of temperature decreases to these two causes and the implications of that attribution for the future evolution of stratospheric temperature. Time series analysis is applied to simulations of the Goddard Earth Observing System Chemistry–Climate Model (GEOS CCM) to separate the contributions of GHGs from those of ODSs based on their different time-dependent signatures. The analysis indicates that about 60%–70% of the temperature decrease of the past two decades in the upper stratosphere near 1 hPa and in the lower midlatitude stratosphere near 50 hPa resulted from changes attributable to ODSs, primarily through their impact on ozone. As ozone recovers over the next several decades, the temperature should continue to decrease in the middle and upper stratosphere because of GHG increases. The time series of observed temperature in the upper stratosphere is approaching the length needed to separate the effects of ozone-depleting substances from those of greenhouse gases using temperature time series data.

Corresponding author address: Richard S. Stolarski, Mail Code 613.3, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771. Email: richard.s.stolarski@nasa.gov

Abstract

The temperature of the stratosphere has decreased over the past several decades. Two causes contribute to that decrease: well-mixed greenhouse gases (GHGs) and ozone-depleting substances (ODSs). This paper addresses the attribution of temperature decreases to these two causes and the implications of that attribution for the future evolution of stratospheric temperature. Time series analysis is applied to simulations of the Goddard Earth Observing System Chemistry–Climate Model (GEOS CCM) to separate the contributions of GHGs from those of ODSs based on their different time-dependent signatures. The analysis indicates that about 60%–70% of the temperature decrease of the past two decades in the upper stratosphere near 1 hPa and in the lower midlatitude stratosphere near 50 hPa resulted from changes attributable to ODSs, primarily through their impact on ozone. As ozone recovers over the next several decades, the temperature should continue to decrease in the middle and upper stratosphere because of GHG increases. The time series of observed temperature in the upper stratosphere is approaching the length needed to separate the effects of ozone-depleting substances from those of greenhouse gases using temperature time series data.

Corresponding author address: Richard S. Stolarski, Mail Code 613.3, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771. Email: richard.s.stolarski@nasa.gov

Save