• Birks, A., 2006: Latitude dependent bias correction. AATSR Tech. Note, Rutherford Appleton Laboratory, 7 pp. [Available online at http://earth.esa.int/pcs/envisat/aatsr/articles/].

    • Search Google Scholar
    • Export Citation
  • Donlon, C., P. J. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward, and M. J. Murray, 2002: Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15 , 353369.

    • Search Google Scholar
    • Export Citation
  • Donlon, C., and Coauthors, 2007: The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Amer. Meteor. Soc., 88 , 11971213.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and P. K. Taylor, 2006: Toward estimating climatic trends in SST. Part I: Methods of measurement. J. Atmos. Oceanic Technol., 23 , 464475.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., W. Barnes, T. Kozu, J. Shieu, and J. J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Llewellyn-Jones, D., M. C. Edwards, C. T. Mutlow, A. R. Birks, I. J. Barton, and H. Tait, 2001: AATSR: Global-change and surface-temperature measurements from Envisat. ESA Bull., 105 , 1021. [Available online at http://www.esa.int/esapub/bulletin/bullet105/bul105_1.pdf].

    • Search Google Scholar
    • Export Citation
  • May, D. A., L. Stowe, J. Hawkins, and E. P. McClain, 1992: A correction for Saharan dust effects on satellite sea surface temperature measurements. J. Geophys. Res., 97 , 36113619.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., A. R. Harris, M. J. Murray, and A. M. Závody, 1999: Toward the elimination of bias in satellite retrieval of sea surface temperature. 1. Theory, modeling and inter-algorithm comparison. J. Geophys. Res., 104 , 2356523578.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., A. R. Harris, E. Maturi, and S. MacCallum, 2005: Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval. Quart. J. Roy. Meteor. Soc., 131 , 27352755.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., L. A. Horrocks, J. Eyre, and A. G. O’Carroll, 2006: Retrievals of sea surface temperature from infra-red imagery: Origin and form of systematic errors. Quart. J. Roy. Meteor. Soc., 132 , 12051223.

    • Search Google Scholar
    • Export Citation
  • O’Carroll, A. G., J. G. Watts, L. A. Horrocks, R. W. Saunders, and N. A. Rayner, 2006: Validation of the AATSR Meteo product sea surface temperature. J. Atmos. Oceanic Technol., 23 , 711726.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20 , 54735496.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., S. Saha, and Å Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13 , 14211435.

  • Vázquez-Cuervo, J., E. M. Armstrong, and A. Harris, 2004: The effect of aerosols and clouds on the retrieval of infrared sea surface temperatures. J. Climate, 17 , 39213933.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and T. Meissner, 2000: AMSR ocean algorithm, version 2. RSS Tech. Rep. 121599A, 66 pp. [Available from Remote Sensing Systems, 438 First St., Suite 200, Santa Rosa, CA 95401].

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. L. Gentemann, D. K. Smith, and D. B. Chelton, 2000: Satellite measurements of sea surface temperature through cloud. Science, 288 , 847850.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16 , 16011612.

    • Search Google Scholar
    • Export Citation
  • Závody, A. M., C. T. Mutlow, and D. T. Llewellyn-Jones, 1995: A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer. J. Geophys. Res., 100 , 937952.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

Evaluation of AATSR and TMI Satellite SST Data

View More View Less
  • 1 NOAA/National Climatic Data Center, Asheville, North Carolina
  • | 2 Remote Sensing Systems, Santa Rosa, California
  • | 3 University of Leicester, Leicester, United Kingdom
Restricted access

Abstract

The purpose of this paper is to investigate two satellite instruments for SST: the infrared (IR) Advanced Along Track Scanning Radiometer (AATSR) and the microwave (MW) Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). Because of its dual view, AATSR has a potential for lower biases than other IR products such as the Advanced Very High Resolution Radiometer (AVHRR), while the tropical TMI record was available for a longer period of time than the global MW instrument, the Advanced Microwave Scanning Radiometer (AMSR).

The results show that the AATSR IR retrievals are good quality with biases lower than or as low as other satellite retrievals between 50°S and 50°N. Furthermore, the dual-view algorithm reduces the influence of aerosol contamination. However, the AATSR coverage is roughly half that of AVHRR. North of 50°N there appear to be biases and high variability in summer daytime retrievals, with smaller but consistent biases observed below 50°S. TMI data can significantly improve coverage offshore in regions where IR retrievals are reduced by cloud cover. However, TMI data have small-scale biases from land contamination that should be removed by modifying the land–sea mask to remove more coastal regions.

Corresponding author address: Richard W. Reynolds, NOAA/National Climatic Data Center, 151 Patton Ave., Asheville, NC 28801-5001. Email: richard.w.reynolds@noaa.gov

Abstract

The purpose of this paper is to investigate two satellite instruments for SST: the infrared (IR) Advanced Along Track Scanning Radiometer (AATSR) and the microwave (MW) Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). Because of its dual view, AATSR has a potential for lower biases than other IR products such as the Advanced Very High Resolution Radiometer (AVHRR), while the tropical TMI record was available for a longer period of time than the global MW instrument, the Advanced Microwave Scanning Radiometer (AMSR).

The results show that the AATSR IR retrievals are good quality with biases lower than or as low as other satellite retrievals between 50°S and 50°N. Furthermore, the dual-view algorithm reduces the influence of aerosol contamination. However, the AATSR coverage is roughly half that of AVHRR. North of 50°N there appear to be biases and high variability in summer daytime retrievals, with smaller but consistent biases observed below 50°S. TMI data can significantly improve coverage offshore in regions where IR retrievals are reduced by cloud cover. However, TMI data have small-scale biases from land contamination that should be removed by modifying the land–sea mask to remove more coastal regions.

Corresponding author address: Richard W. Reynolds, NOAA/National Climatic Data Center, 151 Patton Ave., Asheville, NC 28801-5001. Email: richard.w.reynolds@noaa.gov

Save