Impact of Duration Thresholds on Atlantic Tropical Cyclone Counts

Christopher W. Landsea NOAA/NWS/National Hurricane Center, Miami, Florida

Search for other papers by Christopher W. Landsea in
Current site
Google Scholar
PubMed
Close
,
Gabriel A. Vecchi NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
,
Lennart Bengtsson Environmental Systems Science Centre, University of Reading, Reading, United Kingdom

Search for other papers by Lennart Bengtsson in
Current site
Google Scholar
PubMed
Close
, and
Thomas R. Knutson NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas R. Knutson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Records of Atlantic basin tropical cyclones (TCs) since the late nineteenth century indicate a very large upward trend in storm frequency. This increase in documented TCs has been previously interpreted as resulting from anthropogenic climate change. However, improvements in observing and recording practices provide an alternative interpretation for these changes: recent studies suggest that the number of potentially missed TCs is sufficient to explain a large part of the recorded increase in TC counts. This study explores the influence of another factor—TC duration—on observed changes in TC frequency, using a widely used Atlantic hurricane database (HURDAT). It is found that the occurrence of short-lived storms (duration of 2 days or less) in the database has increased dramatically, from less than one per year in the late nineteenth–early twentieth century to about five per year since about 2000, while medium- to long-lived storms have increased little, if at all. Thus, the previously documented increase in total TC frequency since the late nineteenth century in the database is primarily due to an increase in very short-lived TCs.

The authors also undertake a sampling study based upon the distribution of ship observations, which provides quantitative estimates of the frequency of missed TCs, focusing just on the moderate to long-lived systems with durations exceeding 2 days in the raw HURDAT. Upon adding the estimated numbers of missed TCs, the time series of moderate to long-lived Atlantic TCs show substantial multidecadal variability, but neither time series exhibits a significant trend since the late nineteenth century, with a nominal decrease in the adjusted time series.

Thus, to understand the source of the century-scale increase in Atlantic TC counts in HURDAT, one must explain the relatively monotonic increase in very short-duration storms since the late nineteenth century. While it is possible that the recorded increase in short-duration TCs represents a real climate signal, the authors consider that it is more plausible that the increase arises primarily from improvements in the quantity and quality of observations, along with enhanced interpretation techniques. These have allowed National Hurricane Center forecasters to better monitor and detect initial TC formation, and thus incorporate increasing numbers of very short-lived systems into the TC database.

Corresponding author address: Christopher W. Landsea, NOAA/NWS/National Hurricane Center, 11691 SW 17th Street, Miami, FL 33165-2149. Email: chris.landsea@noaa.gov

Abstract

Records of Atlantic basin tropical cyclones (TCs) since the late nineteenth century indicate a very large upward trend in storm frequency. This increase in documented TCs has been previously interpreted as resulting from anthropogenic climate change. However, improvements in observing and recording practices provide an alternative interpretation for these changes: recent studies suggest that the number of potentially missed TCs is sufficient to explain a large part of the recorded increase in TC counts. This study explores the influence of another factor—TC duration—on observed changes in TC frequency, using a widely used Atlantic hurricane database (HURDAT). It is found that the occurrence of short-lived storms (duration of 2 days or less) in the database has increased dramatically, from less than one per year in the late nineteenth–early twentieth century to about five per year since about 2000, while medium- to long-lived storms have increased little, if at all. Thus, the previously documented increase in total TC frequency since the late nineteenth century in the database is primarily due to an increase in very short-lived TCs.

The authors also undertake a sampling study based upon the distribution of ship observations, which provides quantitative estimates of the frequency of missed TCs, focusing just on the moderate to long-lived systems with durations exceeding 2 days in the raw HURDAT. Upon adding the estimated numbers of missed TCs, the time series of moderate to long-lived Atlantic TCs show substantial multidecadal variability, but neither time series exhibits a significant trend since the late nineteenth century, with a nominal decrease in the adjusted time series.

Thus, to understand the source of the century-scale increase in Atlantic TC counts in HURDAT, one must explain the relatively monotonic increase in very short-duration storms since the late nineteenth century. While it is possible that the recorded increase in short-duration TCs represents a real climate signal, the authors consider that it is more plausible that the increase arises primarily from improvements in the quantity and quality of observations, along with enhanced interpretation techniques. These have allowed National Hurricane Center forecasters to better monitor and detect initial TC formation, and thus incorporate increasing numbers of very short-lived systems into the TC database.

Corresponding author address: Christopher W. Landsea, NOAA/NWS/National Hurricane Center, 11691 SW 17th Street, Miami, FL 33165-2149. Email: chris.landsea@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOC 592 KB)
Save
  • Atlas, R., and Coauthors, 2001: The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82 , 19651990.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81 , S1S50.

  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A , 539561.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., E. N. Rappaport, and C. W. Landsea, 2007: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2006 (and other frequently requested hurricane facts). NOAA Tech. Memo NWS TPC-5, 43 pp. [Available online at http://www.nhc.noaa.gov/pdf/NWS-TPC-5.pdf].

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., R. D. Knabb, M. Mainelli, and T. B. Kimberlain, 2009: Atlantic hurricane season of 2007. Mon. Wea. Rev., 137 , 40614088.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and N. Dotzek, 2008: The spatial distribution of severe convective storms and an analysis of their secular changes. Climate Extremes and Society, H. F. Diaz and R. Murnane, Eds., Cambridge University Press, 35–54.

    • Search Google Scholar
    • Export Citation
  • Brown, D. P., J. L. Beven, J. L. Franklin, and E. S. Blake, 2010: Atlantic hurricane season of 2008. Mon. Wea. Rev., in press.

  • Brueske, K. F., and C. S. Velden, 2003: Satellite-based tropical cyclone intensity estimation using the NOAA–KLM series Advanced Microwave Sounding Unit (AMSU). Mon. Wea. Rev., 131 , 687697.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Guo, 2007: Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys. Res. Lett., 34 , L14801. doi:10.1029/2007GL030169.

    • Search Google Scholar
    • Export Citation
  • Chauvin, F., J-F. Royer, and M. Déqué, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dyn., 27 , 377399.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455 , 9295.

  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326 , 483485.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Emanuel, K. A., R. Sundarajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89 , 347367.

    • Search Google Scholar
    • Export Citation
  • Fernández-Partagás, J., and H. F. Diaz, 1996: Atlantic hurricanes in the second half of the nineteenth century. Bull. Amer. Meteor. Soc., 77 , 28992906.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21 , 52045228.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131 , 585616.

  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Holland, G. J., 2007: Misuse of landfall as a proxy for Atlantic tropical cyclone activity. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO360001.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Philos. Trans. Roy. Soc., A, 365 , 26952716.

    • Search Google Scholar
    • Export Citation
  • IWTC, 2007: Sixth WMO International Workshop on Tropical Cyclones (IWTC-VI). World Meteorological Organization/TD 1383, World Weather Research Program 2007-1, 92 pp. [Available online at http://www.wmo.ch/pages/prog/arep/tmrp/documents/WWRP2007_1_IWTC_VI.pdf].

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886-1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, Coral Gables, FL, 21 pp. [Available online at http://www.nhc.noaa.gov/pdf/NWS-NHC-1988-22.pdf].

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17 , 34773495.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1 , 359364. doi:10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88 , 17671781.

    • Search Google Scholar
    • Export Citation
  • Landsea, C., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO180001.

  • Landsea, C., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

    • Search Google Scholar
    • Export Citation
  • Landsea, C., and Coauthors, 2008: A reanalysis of the 1911–20 Atlantic hurricane database. J. Climate, 21 , 21382168.

  • Lanzante, J. R., 1996: Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int. J. Climatol., 16 , 11971226.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87 .doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., K. A. Emanuel, G. J. Holland, and P. J. Webster, 2007a: Atlantic tropical cyclones revisited. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO360002.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., T. A. Sabbatelli, and U. Neu, 2007b: Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophys. Res. Lett., 34 , L22707. doi:10.1029/2007GL031781.

    • Search Google Scholar
    • Export Citation
  • McDonald, R. E., D. G. Bleaken, D. R. Cresswell, V. D. Pope, and C. A. Senior, 2005: Tropical storms: Representation and diagnosis in climate models and the impacts of climate change. Climate Dyn., 25 , 1936. doi:10.1007/s00382-004-0491-0.

    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., B. R. Jarvinen, C. J. McAdie, and G. R. Hammer, 1999: Tropical Cyclones of the North Atlantic Ocean, 1871–1998. Historical Climatology Series, Vol. 6-2, National Climatic Data Center/Tropical Prediction Center/National Hurricane Center, 206 pp.

    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and C. S. Velden, 2007: The Advanced Dvorak Technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22 , 287298.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20-km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84 , 259276.

    • Search Google Scholar
    • Export Citation
  • Santer, B., T. Wigley, J. Boyle, D. Gaffen, J. Hnilo, D. Nychka, D. Parker, and K. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105 , (D6). 73377356.

    • Search Google Scholar
    • Export Citation
  • Sheets, R. C., 1990: The National Hurricane Center—Past, present, and future. Wea. Forecasting, 5 , 185232.

  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem., Geophys., Geosyst., 9 , Q04V01. doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007a: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34 , L08702. doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007b: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450 , 10661070. doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21 , 35803600.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., K. L. Swanson, and B. J. Soden, 2008: Whither hurricane activity? Science, 322 , 687689. doi:10.1126/science.1164396.

  • Verhoef, A., and A. Stoffelen, 2009: ASCAT Wind Product User Manual, version 1.6. EUMETSAT Doc. SAF/OSI/CDOP/KNMI/TEC/MA/126, 21 pp. [Available online at http://www.knmi.nl/publications/fulltexts/ss3_pm_ascat_1.6.pdf].

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lot, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33 , L17712. doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7179 2315 169
PDF Downloads 1952 506 44