Present-Day Arctic Sea Ice Variability in the Coupled ECHAM5/MPI-OM Model

Nikolay V. Koldunov Institut für Meereskunde, KlimaCampus, Universität Hamburg, and International Max-Planck Research School on Earth System Modelling, Hamburg, Germany

Search for other papers by Nikolay V. Koldunov in
Current site
Google Scholar
PubMed
Close
,
Detlef Stammer Institut für Meereskunde, KlimaCampus, Universität Hamburg, Hamburg, Germany

Search for other papers by Detlef Stammer in
Current site
Google Scholar
PubMed
Close
, and
Jochem Marotzke Max-Planck-Institute for Meteorology, Hamburg, Germany

Search for other papers by Jochem Marotzke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As a contribution to a detailed evaluation of Intergovernmental Panel on Climate Change (IPCC)-type coupled climate models against observations, this study analyzes Arctic sea ice parameters simulated by the Max-Planck-Institute for Meteorology (MPI-M) fully coupled climate model ECHAM5/Max-Planck-Institute for Meteorology Hamburg Primitive Equation Ocean Model (MPI-OM) for the period from 1980 to 1999 and compares them with observations collected during field programs and by satellites. Results of the coupled run forced by twentieth-century CO2 concentrations show significant discrepancies during summer months with respect to observations of the spatial distribution of the ice concentration and ice thickness. Equally important, the coupled run lacks interannual variability in all ice and Arctic Ocean parameters. Causes for such big discrepancies arise from errors in the ECHAM5/MPI-OM atmosphere and associated errors in surface forcing fields (especially wind stress). This includes mean bias pattern caused by an artificial circulation around the geometric North Pole in its atmosphere, as well as insufficient atmospheric variability in the ECHAM5/MPI-OM model, for example, associated with Arctic Oscillation/North Atlantic Oscillation (AO/NAO). In contrast, the identical coupled ocean–ice model, when driven by NCEP–NCAR reanalysis fields, shows much increased skill in its ice and ocean circulation parameters. However, common to both model runs is too strong an ice export through the Fram Strait and a substantially biased heat content in the interior of the Arctic Ocean, both of which may affect sea ice budgets in centennial projections of the Arctic climate system.

Corresponding author address: Nikolay V. Koldunov, Institut für Meereskunde, KlimaCampus, Universität Hamburg, Grindelberg 5, 20144 Hamburg, Germany. Email: nikolay.koldunov@zmaw.de

Abstract

As a contribution to a detailed evaluation of Intergovernmental Panel on Climate Change (IPCC)-type coupled climate models against observations, this study analyzes Arctic sea ice parameters simulated by the Max-Planck-Institute for Meteorology (MPI-M) fully coupled climate model ECHAM5/Max-Planck-Institute for Meteorology Hamburg Primitive Equation Ocean Model (MPI-OM) for the period from 1980 to 1999 and compares them with observations collected during field programs and by satellites. Results of the coupled run forced by twentieth-century CO2 concentrations show significant discrepancies during summer months with respect to observations of the spatial distribution of the ice concentration and ice thickness. Equally important, the coupled run lacks interannual variability in all ice and Arctic Ocean parameters. Causes for such big discrepancies arise from errors in the ECHAM5/MPI-OM atmosphere and associated errors in surface forcing fields (especially wind stress). This includes mean bias pattern caused by an artificial circulation around the geometric North Pole in its atmosphere, as well as insufficient atmospheric variability in the ECHAM5/MPI-OM model, for example, associated with Arctic Oscillation/North Atlantic Oscillation (AO/NAO). In contrast, the identical coupled ocean–ice model, when driven by NCEP–NCAR reanalysis fields, shows much increased skill in its ice and ocean circulation parameters. However, common to both model runs is too strong an ice export through the Fram Strait and a substantially biased heat content in the interior of the Arctic Ocean, both of which may affect sea ice budgets in centennial projections of the Arctic climate system.

Corresponding author address: Nikolay V. Koldunov, Institut für Meereskunde, KlimaCampus, Universität Hamburg, Grindelberg 5, 20144 Hamburg, Germany. Email: nikolay.koldunov@zmaw.de

Save
  • Arzel, O., T. Fichefet, and H. Goosse, 2006: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Modell., 12 , 401415.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., J. C. Fyfe, and G. M. Flato, 2002: Sea ice response to wind forcing from AMIP models. J. Climate, 15 , 522536.

  • Bitz, C. M., P. R. Gent, R. A. Woodgate, M. M. Holland, and R. Lindsay, 2006: The influence of sea ice on ocean heat uptake in response to increasing CO2. J. Climate, 19 , 24372450.

    • Search Google Scholar
    • Export Citation
  • Bourke, R. H., and R. P. Garrett, 1987: Sea ice thickness distribution in the Arctic Ocean. Cold Reg. Sci. Technol., 13 , 259280.

  • Cassano, J. J., P. Uotila, and A. Lynch, 2006: Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic. Int. J. Climatol., 26 , 10271049.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally, 1996, updated 2008: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data 1980–1999. National Snow and Ice Data Center, digital media. [Available online at http://nsidc.org/data/nsidc-0051.html].

    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 2007: Simulations of Arctic temperature and pressure by global coupled models. J. Climate, 20 , 609632.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., D. J. Cavalieri, C. L. Parkinson, and P. Gloersen, 1997: Passive microwave algorithms for sea ice concentration: A comparison of two techniques. Remote Sens. Environ., 60 , 357384.

    • Search Google Scholar
    • Export Citation
  • Deweaver, E., and C. M. Bitz, 2006: Atmospheric circulation and its effect on Arctic sea ice in CCSM3 simulations at medium and high resolution. J. Climate, 19 , 24152436.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., N. Untersteiner, and J. S. Wettlaufer, 2007: On the reliability of simulated Arctic sea ice in global climate models. Geophys. Res. Lett., 34 , L10501. doi:10.1029/2007GL029914.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and Coauthors, 2004: Sea-ice and its response to CO2 forcing as simulated by global climate models. Climate Dyn., 23 , 229241.

    • Search Google Scholar
    • Export Citation
  • Fowler, C., 2003 (updated 2007): Polar Pathfinder daily 25 km EASE-grid sea ice motion vectors. National Snow and Ice Data Center, digital media. [Available online at http://nsidc.org/data/nsidc-0116.html].

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Gerdes, R., and C. Köberle, 2007: Comparison of Arctic sea ice thickness variability in IPCC climate of the 20th century experiments and in ocean–sea ice hindcasts. J. Geophys. Res., 112 , C04S13. doi:10.1029/2006JC003616.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28 , 831841.

  • Haak, H., 2004: Simulation of low-frequency climate variability in the North Atlantic Ocean and the Arctic. Ph.D. thesis, University of Hamburg, 115 pp.

  • Haak, H., J. Jungclaus, U. Mikolajewicz, and M. Latif, 2003: Formation and propagation of great salinity anomalies. Geophys. Res. Lett., 30 , 1473. doi:10.1029/2003GL017065.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and L. Dümenil, 1997: A parametrization of the lateral waterflow for the global scale. Climate Dyn., 14 , 1731.

  • Hagemann, S., and L. D. Gates, 2003: Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Climate Dyn., 21 , 349359.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1979: Dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9 , 815846.

  • Holloway, G., and Coauthors, 2007: Water properties and circulation in Arctic Ocean models. J. Geophys. Res., 112 , C04S03. doi:10.1029/2006JC003642.

    • Search Google Scholar
    • Export Citation
  • Hu, Z-Z., S. I. Kuzmina, L. Bengtsson, and D. M. Holland, 2004: Sea-ice change and its connection with climate change in the Arctic in CMIP2 simulations. J. Geophys. Res., 109 , D10106. doi:10.1029/2003JD004454.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and M. M. Holland, 2007: Global atmospheric forcing data for Arctic ice-ocean modeling. J. Geophys. Res., 112 , C04S14. doi:10.1029/2006JC003640.

    • Search Google Scholar
    • Export Citation
  • Johnson, M., S. Gaffigan, E. Hunke, and R. Gerdes, 2007: A comparison of Arctic Ocean sea ice concentration among the coordinated AOMIP model experiments. J. Geophys. Res., 112 , C04S11. doi:10.1029/2006JC003690.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19 , 39523972.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kattsov, V., G. Alekseev, T. Pavlova, P. Sporyshev, R. Bekryaev, and V. Govorkova, 2007: Modeling the evolution of the world ocean ice cover in the 20th and 21st centuries. Izv. Atmos. Ocean. Phys., 43 , 142157.

    • Search Google Scholar
    • Export Citation
  • Kauker, F., T. Kaminski, M. Karcher, R. Giering, R. Gerdes, and M. Voßbeck, 2009: Adjoint analysis of the 2007 all time arctic sea-ice minimum. Geophys. Res. Lett., 36 , L03707. doi:10.1029/2008GL036323.

    • Search Google Scholar
    • Export Citation
  • Konstantinov, Y. B., and K. I. Grachev, 2000: High-Latitude Airborne Expeditions Sever (1937, 1941–1993) (in Russian). Gidrometeoizdat Publishing House, 176 pp.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2008: Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophys. Res. Lett., 35 , L03504. doi:10.1029/2007GL032692.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., A. Schweiger, D. A. Rothrock, S. Pang, and C. Kottmeier, 1998: Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. J. Geophys. Res., 103C , 81918214.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, and S. S. Pang, 2004: Fram Strait sea ice outflow. J. Geophys. Res., 109 , C01009. doi:10.1029/2003JC001785.

  • Levitus, S., and Coauthors, 1998: NOAA Atlas NESDIS 18, World Ocean Database 1998: Volume 1: Introduction. U.S. Government Printing Office, 346 pp.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., J. Zhang, A. Schweiger, M. Steele, and H. Stern, 2009: Arctic sea ice retreat in 2007 follows thinning trend. J. Climate, 22 , 165176.

    • Search Google Scholar
    • Export Citation
  • Makshtas, A., D. Atkinson, M. Kulakov, S. Shutilin, R. Krishfield, and A. Proshutinsky, 2007: Atmospheric forcing validation for modeling the central Arctic. Geophys. Res. Lett., 34 , L20706. doi:10.1029/2007GL031378.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Roske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5 , 91127.

    • Search Google Scholar
    • Export Citation
  • Martin, T., and R. Gerdes, 2007: Sea ice drift variability in Arctic Ocean Model Intercomparison Project models and observations. J. Geophys. Res., 112 , C04S10. doi:10.1029/2006JC003617.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., and M. Steele, 2001: Future of the Arctic sea ice cover: Implications of an Antarctic analog. Geophys. Res. Lett., 28 , 307310.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., M. C. Serreze, and R. G. Barry, 1996: Recent decreases in Arctic summer ice cover and linkages to atmospheric circulation anomalies. Geophys. Res. Lett., 23 , 16771680.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., 2005: Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas. IEEE Trans. Geosci. Remote Sens., 43 , 13241337. doi:10.1109/TGRS.2005.846151.

    • Search Google Scholar
    • Export Citation
  • Oberhuber, J. M., 1993: Simulation of the Atlantic circulation with a coupled sea ice–mixed layer–isopycnal general circulation model. Part I: Model description. J. Phys. Oceanogr., 23 , 808829.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2008: Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res., 113 , C07003. doi:10.1029/2007JC004564.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., K. Y. Vinnikov, and D. J. Cavalieri, 2006: Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models. J. Geophys. Res., 111 , C07012. doi:10.1029/2005JC003408.

    • Search Google Scholar
    • Export Citation
  • Pinto, J., S. Zacharias, A. Fink, G. Leckebusch, and U. Ulbrich, 2008: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dyn., 32 , 711737. doi:10.1007/s00382-008-0396-4.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2003: Long-term ice variability in Arctic marginal seas. J. Climate, 16 , 20782085.

  • Proshutinsky, A., and Z. Kowalik, 2007: Preface to special section on Arctic Ocean Model Intercomparison Project (AOMIP) studies and results. J. Geophys. Res., 112 , C04S01. doi:10.1029/2006JC004017.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12 , 11541158.

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. MPI-M Tech. Rep. 349, MPI-M, 127 pp.

    • Search Google Scholar
    • Export Citation
  • Romanov, I. P., 1995: Atlas of Ice and Snow of the Arctic Basin and Siberian Shelf Seas. 2nd ed. Backbone Publishing Company, 277 pp.

  • Rothrock, D. A., D. B. Percival, and M. Wensnahan, 2008: The decline in Arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. J. Geophys. Res., 113 , C05003. doi:10.1029/2007JC004252.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6 , 379389.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315 , 15331536.

  • Steele, M., and T. Boyd, 1998: Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res., 103 , (C5). 1041910435.

  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14 , 20792087.

    • Search Google Scholar
    • Export Citation
  • Stössel, A., and W. B. Owens, 1992: The Hamburg sea-ice model. Tech. Rep. 3, German Climate Computer Center (DKRZ), 61 pp.

  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34 , L09501. doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., A. Caubel, D. Declat, and L. Terray, 2003: OASIS Ocean Atmosphere Sea Ice Soil users guide. Tech. Rep., Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Vinje, T., N. Nordlund, and Å Kvambekk, 1998: Monitoring ice thickness in Fram Strait. J. Geophys. Res., 103 , (C5). 1043710449.

  • Walsh, J. E., and R. G. Crane, 1992: A comparison of GCM simulations of Arctic climate. Geophys. Res. Lett., 19 , 2932.

  • Zhang, J., R. Lindsay, M. Steele, and A. Schweiger, 2008: What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys. Res. Lett., 35 , L11505. doi:10.1029/2008GL034005.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. E. Walsh, 2006: Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations. J. Climate, 19 , 17301747.

    • Search Google Scholar
    • Export Citation
  • Zubov, N. N., and M. M. Somov, 1940: Ice drift in the northern Arctic Basin (in Russian). Probl. Arct., 2 , 5168.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 576 250 18
PDF Downloads 78 25 2