Climate Response at the Paleocene–Eocene Thermal Maximum to Greenhouse Gas Forcing—A Model Study with CCSM3

A. Winguth The University of Texas at Arlington, Arlington, Texas

Search for other papers by A. Winguth in
Current site
Google Scholar
PubMed
Close
,
C. Shellito University of Northern Colorado, Greeley, Colorado

Search for other papers by C. Shellito in
Current site
Google Scholar
PubMed
Close
,
C. Shields National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by C. Shields in
Current site
Google Scholar
PubMed
Close
, and
C. Winguth The University of Texas at Arlington, Arlington, Texas

Search for other papers by C. Winguth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Paleocene–Eocene Thermal Maximum (PETM; 55 Ma) is of particular interest since it is regarded as a suitable analog to future climate change. In this study, the PETM climate is investigated using the Community Climate System Model (CCSM3) with atmospheric CO2 concentrations of 4×, 8×, and 16× the preindustrial value.

Simulated climate change from 4× to 8× atmospheric CO2 concentration, possibly corresponding to an environmental precursor of the PETM event, leads to a warming of the North Atlantic Ocean Intermediate-Water masses, thus lowering the critical depth for methane hydrate destabilization by ∼500 m. A further increase from 8× to 16×CO2, analogous to a possible massive methane hydrate release, results in global oceanic warming and stratification. The increase in the radiative surface warming, especially at high latitudes, is partially offset by a decrease in the ocean heat transport due to a reduced overturning circulation. Surface temperature values simulated in the 16×CO2 PETM run represent the closest match to surface temperature reconstructions from proxies for this period.

Simulated PETM precipitation, characterized by a slight northward shift of the intertropical convergence zone, increases at higher CO2 concentrations, especially for the northern midlatitudes as well as the high latitudes in both hemispheres. Data-inferred precipitation values and gradients for North America and Spain, for instance, are in good agreement with the 16×CO2 simulation. Increasing atmospheric CO2 concentrations might also have favored the release of terrestrial methane through warmer and wetter conditions over land, thus reinforcing the greenhouse gas concentration increase.

Corresponding author address: Arne Winguth, Department of Earth and Environmental Sciences, The University of Texas at Arlington, 500 Yates St., Arlington, TX 76019. Email: awinguth@uta.edu

Abstract

The Paleocene–Eocene Thermal Maximum (PETM; 55 Ma) is of particular interest since it is regarded as a suitable analog to future climate change. In this study, the PETM climate is investigated using the Community Climate System Model (CCSM3) with atmospheric CO2 concentrations of 4×, 8×, and 16× the preindustrial value.

Simulated climate change from 4× to 8× atmospheric CO2 concentration, possibly corresponding to an environmental precursor of the PETM event, leads to a warming of the North Atlantic Ocean Intermediate-Water masses, thus lowering the critical depth for methane hydrate destabilization by ∼500 m. A further increase from 8× to 16×CO2, analogous to a possible massive methane hydrate release, results in global oceanic warming and stratification. The increase in the radiative surface warming, especially at high latitudes, is partially offset by a decrease in the ocean heat transport due to a reduced overturning circulation. Surface temperature values simulated in the 16×CO2 PETM run represent the closest match to surface temperature reconstructions from proxies for this period.

Simulated PETM precipitation, characterized by a slight northward shift of the intertropical convergence zone, increases at higher CO2 concentrations, especially for the northern midlatitudes as well as the high latitudes in both hemispheres. Data-inferred precipitation values and gradients for North America and Spain, for instance, are in good agreement with the 16×CO2 simulation. Increasing atmospheric CO2 concentrations might also have favored the release of terrestrial methane through warmer and wetter conditions over land, thus reinforcing the greenhouse gas concentration increase.

Corresponding author address: Arne Winguth, Department of Earth and Environmental Sciences, The University of Texas at Arlington, 500 Yates St., Arlington, TX 76019. Email: awinguth@uta.edu

Supplementary Materials

    • Supplemental Materials (PDF 459 KB)
Save
  • An, Z., J. E. Kutzbach, W. L. Prell, and S. C. Porter, 2001: Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature, 411 , 6266.

    • Search Google Scholar
    • Export Citation
  • Barron, E. J., W. W. Hay, and S. Thompson, 1989: The hydrologic cycle: A major variable during Earth history. Global Planet. Change., 1 , 157174.

    • Search Google Scholar
    • Export Citation
  • Beerling, D. J., C. N. Hewitt, J. A. Pyle, and J. A. Raven, 2007: Critical issues in trace gas biogeochemistry and global change. Philos. Trans. Roy. Soc. London, 365A , 16291642.

    • Search Google Scholar
    • Export Citation
  • Bice, K. L., and J. Marotzke, 2002: Could changing ocean circulation have destabilized methane hydrate at the Paleocene/Eocene boundary? Paleoceanography, 17 , 1018. doi:10.1029/2001PA000678.

    • Search Google Scholar
    • Export Citation
  • Bice, K. L., C. R. Scotese, D. Seidov, and E. J. Barron, 2000: Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeogr. Palaeoclimatol. Palaeoecol., 161 , 295310.

    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., and B. B. Bowen, 2008: Mechanisms of PETM global change constrained by a new record from central Utah. Geology, 36 , 379382.

    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., and B. B. Bowen, 2009: Mechanisms of PETM global change constrained by a new record from central Utah: Reply. Geology, 37 , e185.

    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., D. J. Beerling, P. L. Koch, J. C. Zachos, and T. Quattlebaum, 2004: A humid climate state during the Paleocene/Eocene thermal maximum. Nature, 432 , 495499.

    • Search Google Scholar
    • Export Citation
  • Bralower, T. J., D. J. Thomas, J. C. Zachos, M. M. Hirschmann, U. Röhl, H. Sigurdsson, E. Thomas, and D. L. Whitney, 1997: High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link? Geology, 25 , 963967.

    • Search Google Scholar
    • Export Citation
  • Bralower, T. J., I. Premoli Silva, and M. J. Malone, 2006: 1. Leg 198 Synthesis: A remarkable 120-m.y. record of climate and oceanography from Shatsky Rise, Northwest Pacific Ocean. Proc. Ocean Drilling Program, Sci. Results, 198 , 147. [Available online at http://www-odp.tamu.edu/publications/198_SR/synth/synth.htm].

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate Model, version 3. NCAR Tech Note NCAR/TN-463+STR, 70 pp.

    • Search Google Scholar
    • Export Citation
  • Brinkhuis, H., and Coauthors, 2006: Episodic fresh surface waters in the Eocene Arctic Ocean. Nature, 441 , 606609.

  • Bryan, F., G. Danabasoglu, N. Nakashiki, Y. Yoshida, D-H. Kim, J. Tsutsui, and S. Doney, 2006: Response of North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19 , 23822397.

    • Search Google Scholar
    • Export Citation
  • Bryden, H., D. H. Roemmich, and J. A. Church, 1991: Ocean heat transport across 24°N in the Pacific. Deep-Sea Res., 38 , 297324.

  • Caldeira, K., and J. F. Kasting, 1992: The life span of the biosphere revisited. Nature, 360 , 721723.

  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Cope, J., 2009: On the sensitivity of the Eocene ocean circulation to arctic freshwater pulses. M.S. thesis, University of Texas at Arlington, 99 pp.

  • Crouch, E., 2001: Environmental change at the time of the Paleocene–Eocene biotic turnover. Ph.D. dissertation, Utrecht University, 216 pp.

  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Dickens, G. R., J. R. O’Neil, D. K. Rea, and R. M. Owen, 1995: Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10 , 965971.

    • Search Google Scholar
    • Export Citation
  • Dickens, G. R., M. M. Castillo, and J. C. G. Walker, 1997: A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of methane hydrate. Geology, 25 , 259262.

    • Search Google Scholar
    • Export Citation
  • Fricke, H. C., and S. L. Wing, 2004: Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene. Amer. J. Sci., 304 , 612635.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16 , 696705.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., F. O. Bryan, G. Danabasoglu, K. Lindsay, D. Tsumune, M. W. Hecht, and S. C. Doney, 2006: Ocean chlorofluorocarbon and heat uptake during the twentieth century in the CCSM3. J. Climate, 19 , 23662381.

    • Search Google Scholar
    • Export Citation
  • Handley, L., P. N. Pearson, I. K. McMillan, and R. D. Pancost, 2008: Large terrestrial and marine carbon and hydrogen isotope excursions in a new Paleocene/Eocene boundary section from Tanzania. Earth Planet. Sci. Lett., 275 , 1725.

    • Search Google Scholar
    • Export Citation
  • Head, J. J., J. I. Bloch, A. K. Hastings, J. R. Bourque, E. A. Cadena, F. A. Herrera, P. D. Polly, and C. A. Jaramillo, 2009: Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature, 457 , 715717.

    • Search Google Scholar
    • Export Citation
  • Higgins, J. A., and D. P. Schrag, 2006: Beyond methane: Towards a theory for Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett., 245 , 523537.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19 , 23982414.

    • Search Google Scholar
    • Export Citation
  • Hollis, C. J., and Coauthors, 2009: Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology, 37 , 99102.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., G. J. Jenkins, and J. J. Ephraums, Eds. 1990: Climate Change: The IPCC Scientific Assessment. Cambridge University Press, 365 pp.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Huber, M., 2009: Snakes tell a torrid tale. Nature, 457 , 669671.

  • Huber, M., and L. C. Sloan, 1999: Warm climate transitions: A general circulation modeling study of the late Paleocene Thermal Maximum (∼56 Ma). J. Geophys. Res., 104 , 1663316655.

    • Search Google Scholar
    • Export Citation
  • Huber, M., and L. C. Sloan, 2001: Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate. Geophys. Res. Lett., 28 , 34813484.

    • Search Google Scholar
    • Export Citation
  • Huber, M., and R. Caballero, 2003: Eocene El Niño: Evidence for robust tropical dynamics in the “hothouse”. Science, 299 , 877881.

    • Search Google Scholar
    • Export Citation
  • Iakokleva, A. I., H. Brinkhuis, and C. Cavagnetto, 2001: Late Paleocene–early Eocene dinoflagellae cysts from the Turgay Strait, Kazakhstan; correlations across ancient seaways. Palaeogeogr. Palaeoclimatol. Palaeoecol., 172 , 243268.

    • Search Google Scholar
    • Export Citation
  • Ivany, L. C., K. C. Lohmann, F. Hasiuk, D. B. Blake, A. Glass, R. B. Aronson, and R. M. Moody, 2008: Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geol. Soc. Amer. Bull., 120 , 659678.

    • Search Google Scholar
    • Export Citation
  • Kelly, D. C., T. J. Bralower, and J. C. Zachos, 1998: Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol., 141 , 139161.

    • Search Google Scholar
    • Export Citation
  • Kennett, J. P., and L. D. Stott, 1991: Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353 , 225229.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J., and P. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17 , 36663682.

  • Kim, J-H., S. Schouten, E. C. Hopmans, B. Donner, and J. S. Sinninghe Damsté, 2008: Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim. Cosmochim. Acta, 72 , 11541173.

    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, B. D., D. P. Schrag, and J. G. Anderson, 2002: On the feedback of stratospheric clouds on polar climate. Geophys. Res. Lett., 29 , 1556. doi:10.1029/2002GL014659.

    • Search Google Scholar
    • Export Citation
  • Koch, P. L., J. C. Zachos, and P. D. Gingerich, 1992: Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature, 358 , 319322.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone–induced upper ocean mixing and climate: Application to equable climates. J. Climate, 21 , 638654.

    • Search Google Scholar
    • Export Citation
  • Kump, L. R., and D. Pollard, 2008: Amplification of Cretaceous warmth by biological cloud feedbacks. Science, 320 , 195.

  • Kutzbach, J. E., W. Prell, and W. F. Ruddiman, 1993: Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol., 101 , 177190.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J-F., J. T. Kiehl, and J. J. Orlando, 2007: The role of hydrogen sulfide in a Permian–Triassic Boundary ozone collapse. Geophys. Res. Lett., 34 , L02801. doi:10.1029/2006GL028384.

    • Search Google Scholar
    • Export Citation
  • Lavin, A., L. Bryden, and G. Parilla, 1998: Meridional transport and heat flux variations in the subtropical North Atlantic. Global Atmos. Ocean Syst., 6 , 269293.

    • Search Google Scholar
    • Export Citation
  • Lourens, L. J., A. Sluijs, D. Kroon, J. C. Zachos, E. Thomas, U. Röhl, J. Bowles, and I. Raffi, 2005: Astronomical pacing of late Paleocene to early Eocene global warming events. Nature, 435 , 10831087.

    • Search Google Scholar
    • Export Citation
  • Lu, G., G. Keller, and A. Pardo, 1998: Stability and change in Tethyan planktic foraminifera across the Paleocene–Eocene transition. Mar. Micropaleontol., 35 , 203233.

    • Search Google Scholar
    • Export Citation
  • Lyle, M., J. Barron, T. J. Bralower, M. Huber, A. Olivarez Lyle, A. C. Ravelo, D. K. Rea, and P. A. Wilson, 2008: Pacific Ocean and Cenozoic evolution of climate. Rev. Geophys., 46 , RG2002. doi:10.1029/2005RG000190.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382 , 436439.

  • Maclennan, J., and S. M. Jones, 2006: Regional uplift, gas hydrate dissociation and the origins of the Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett., 245 , 6580.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4 , 785818.

    • Search Google Scholar
    • Export Citation
  • Marincovich Jr., L., and A. Y. Gladenkov, 1999: Evidence for an early opening of the Bering Strait. Nature, 397 , 149151.

  • Markwick, P. J., 1997: Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: Implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 137 , 205271.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2006: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J. Climate, 19 , 25972616.

    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., M. Gröger, E. Maier-Reimer, G. Schurgers, M. Vizcaíno, and A. Winguth, 2007: Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Climate Dyn., 28 , 599633.

    • Search Google Scholar
    • Export Citation
  • Moran, K., and Coauthors, 2006: The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441 , 601605.

  • Nunes, F., and R. D. Norris, 2006: Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature, 439 , 6063.

  • Oglesby, R. J., 1989: A GCM study of Antarctic glaciation. Climate Dyn., 3 , 135156.

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note TN-461+STR, 174 pp.

  • Otto-Bliesner, B. L., R. Tomas, E. C. Brady, C. Ammann, Z. Kothavala, and G. Clauzet, 2006: Climate sensitivity of moderate- and low-resolution versions of CCSM3 to preindustrial forcings. J. Climate, 19 , 25672583.

    • Search Google Scholar
    • Export Citation
  • Pagani, M., and Coauthors, 2006a: Arctic hydrology during global warming at the Paleocene/Eocene thermal maximum. Nature, 442 , 671675. Corrigendum, 443, 598.

    • Search Google Scholar
    • Export Citation
  • Pagani, M., K. Caldeire, D. Archer, and J. C. Zachos, 2006b: An ancient carbon mystery. Science, 314 , 15561557.

  • Panchuk, K., A. Ridgwell, and L. R. Kump, 2008: Sedimentary response to Paleocene–Eocene Thermal Maximum carbon release: A model–data comparison. Geology, 36 , 315318.

    • Search Google Scholar
    • Export Citation
  • Pancost, R. D., D. S. Steart, L. Handley, M. E. Collinson, J. J. Hooker, A. C. Scott, N. V. Grassineau, and I. I. Glasspool, 2007: Increased terrestrial methane cycling at the Palaeocene–Eocene thermal maximum. Nature, 449 , 332335.

    • Search Google Scholar
    • Export Citation
  • Pearson, P. N., and M. R. Palmer, 2000: Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406 , 695699.

    • Search Google Scholar
    • Export Citation
  • Pearson, P. N., B. E. van Dongen, C. J. Nicholas, R. D. Pancost, S. Schouten, J. M. Singano, and B. S. Wade, 2007: Stable warm tropical climate through the Eocene epoch. Geology, 35 , 211214.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulations of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351 , 2732.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 349–416.

    • Search Google Scholar
    • Export Citation
  • Retallack, G. J., 2005: Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 33 , 333336.

  • Retallack, G. J., 2009: Mechanisms of PETM global change constrained by a new record from central Utah: Comment. Geology, 37 , e184e185.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Robert, C., and J. P. Kennett, 1994: Antarctic subtropical humid episode at the Paleocene–Eocene boundary: Clay-mineral evidence. Geology, 22 , 211214.

    • Search Google Scholar
    • Export Citation
  • Royer, D. L., R. A. Berner, and J. Park, 2007: Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature, 446 , 530532.

    • Search Google Scholar
    • Export Citation
  • Ruddiman, W. F., and J. E. Kutzbach, 1989: Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res., 94 , 1840918427.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and D. T. Shindell, 2003: Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates. Paleoceanography, 18 , 1004. doi:10.1029/2002PA000757.

    • Search Google Scholar
    • Export Citation
  • Schmitz, B., and V. Pujalte, 2007: Abrupt increase in seasonal extreme precipitation at the Paleocene–Eocene boundary. Geology, 35 , 215218.

    • Search Google Scholar
    • Export Citation
  • Schmitz, B., R. P. Speijer, and M. P. Aubry, 1996: Latest Paleocene benthic extinction event on the southern Tethyan shelf (Egypt): Foraminiferal stable isotopic (δ13C, δ18O) records. Geology, 24 , 347350.

    • Search Google Scholar
    • Export Citation
  • Scrutton, C. T., 1978: Periodic growth features in fossil organisms and the length of the day and the month. Tidal Friction and the Earth’s Rotation, P. Brosche and J. Sündermann, Eds., Springer-Verlag, 154–196.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nature Geosci., 1 , 2124.

    • Search Google Scholar
    • Export Citation
  • Sewall, J. O., and L. C. Sloan, 2006: Come a little bit closer: A high-resolution climate study of the early Paleogene Laramide foreland. Geology, 34 , 8184.

    • Search Google Scholar
    • Export Citation
  • Sewall, J. O., L. C. Sloan, M. Huber, and S. Wing, 2000: Climate sensitivity to changes in land surface characteristics. Global Planet. Change, 26 , 445465.

    • Search Google Scholar
    • Export Citation
  • Shackleton, N. J., and J. P. Kennett, 1975: Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Initial Reports of the Deep Sea Drilling Project, Vol. 29, J. P. Kennett, and M. R. E. Houtz, Eds., 743–755. [Available online at http://www.deepseadrilling.org/29/volume/dsdp29_17.pdf].

    • Search Google Scholar
    • Export Citation
  • Shellito, C. J., and L. C. Sloan, 2006: Reconstructing a lost Eocene paradise: Part I. Simulating the change in global floral distribution at the initial Eocene thermal maximum. Global Planet. Change, 50 , 117.

    • Search Google Scholar
    • Export Citation
  • Shellito, C. J., L. C. Sloan, and M. Huber, 2003: Climate model sensitivity to atmospheric CO2 levels in the early-middle Paleogene. Palaeogeogr. Palaeoclimatol. Palaeoecol., 193 , 113123.

    • Search Google Scholar
    • Export Citation
  • Shellito, C. J., J-F. Lamarque, and L. C. Sloan, 2009: Early Eocene Arctic climate sensitivity to pCO2 and basin geography. Geophys. Res. Lett., 36 , L09707. doi:10.1029/2009GL037248.

    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., and E. J. Barron, 1992: Eocene climate model results: Quantitative comparison to paleo-climatic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol., 93 , 183202.

    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., and D. K. Rea, 1996: Atmospheric carbon dioxide and early Eocene climate: A general circulation modeling sensitivity study. Palaeogeogr. Palaeoclimatol. Palaeoecol., 119 , 275292.

    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., and D. Pollard, 1998: Polar stratospheric clouds: A high-latitude warming mechanism in an ancient greenhouse world. Geophys. Res. Lett., 25 , 35173520.

    • Search Google Scholar
    • Export Citation