Challenges in Combining Projections from Multiple Climate Models

Reto Knutti Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Reto Knutti in
Current site
Google Scholar
PubMed
Close
,
Reinhard Furrer Colorado School of Mines, Golden, Colorado, and Institute of Mathematics, University of Zurich, Zurich, Switzerland

Search for other papers by Reinhard Furrer in
Current site
Google Scholar
PubMed
Close
,
Claudia Tebaldi Climate Central, Palo Alto, California

Search for other papers by Claudia Tebaldi in
Current site
Google Scholar
PubMed
Close
,
Jan Cermak Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Jan Cermak in
Current site
Google Scholar
PubMed
Close
, and
Gerald A. Meehl National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gerald A. Meehl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent coordinated efforts, in which numerous general circulation climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multimodel ensembles sample initial conditions, parameters, and structural uncertainties in the model design, and they have prompted a variety of approaches to quantifying uncertainty in future climate change. International climate change assessments also rely heavily on these models. These assessments often provide equal-weighted averages as best-guess results, assuming that individual model biases will at least partly cancel and that a model average prediction is more likely to be correct than a prediction from a single model based on the result that a multimodel average of present-day climate generally outperforms any individual model. This study outlines the motivation for using multimodel ensembles and discusses various challenges in interpreting them. Among these challenges are that the number of models in these ensembles is usually small, their distribution in the model or parameter space is unclear, and that extreme behavior is often not sampled. Model skill in simulating present-day climate conditions is shown to relate only weakly to the magnitude of predicted change. It is thus unclear by how much the confidence in future projections should increase based on improvements in simulating present-day conditions, a reduction of intermodel spread, or a larger number of models. Averaging model output may further lead to a loss of signal—for example, for precipitation change where the predicted changes are spatially heterogeneous, such that the true expected change is very likely to be larger than suggested by a model average. Last, there is little agreement on metrics to separate “good” and “bad” models, and there is concern that model development, evaluation, and posterior weighting or ranking are all using the same datasets. While the multimodel average appears to still be useful in some situations, these results show that more quantitative methods to evaluate model performance are critical to maximize the value of climate change projections from global models.

Corresponding author address: Reto Knutti, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland. Email: reto.knutti@env.ethz.ch

Abstract

Recent coordinated efforts, in which numerous general circulation climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multimodel ensembles sample initial conditions, parameters, and structural uncertainties in the model design, and they have prompted a variety of approaches to quantifying uncertainty in future climate change. International climate change assessments also rely heavily on these models. These assessments often provide equal-weighted averages as best-guess results, assuming that individual model biases will at least partly cancel and that a model average prediction is more likely to be correct than a prediction from a single model based on the result that a multimodel average of present-day climate generally outperforms any individual model. This study outlines the motivation for using multimodel ensembles and discusses various challenges in interpreting them. Among these challenges are that the number of models in these ensembles is usually small, their distribution in the model or parameter space is unclear, and that extreme behavior is often not sampled. Model skill in simulating present-day climate conditions is shown to relate only weakly to the magnitude of predicted change. It is thus unclear by how much the confidence in future projections should increase based on improvements in simulating present-day conditions, a reduction of intermodel spread, or a larger number of models. Averaging model output may further lead to a loss of signal—for example, for precipitation change where the predicted changes are spatially heterogeneous, such that the true expected change is very likely to be larger than suggested by a model average. Last, there is little agreement on metrics to separate “good” and “bad” models, and there is concern that model development, evaluation, and posterior weighting or ranking are all using the same datasets. While the multimodel average appears to still be useful in some situations, these results show that more quantitative methods to evaluate model performance are critical to maximize the value of climate change projections from global models.

Corresponding author address: Reto Knutti, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland. Email: reto.knutti@env.ethz.ch

Save
  • Allen, M. R., P. A. Stott, J. F. B. Mitchell, R. Schnur, and T. L. Delworth, 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407 , 617620.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., and Coauthors, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, S. Solomon, et al., Eds., Cambridge University Press, 1–18.

    • Search Google Scholar
    • Export Citation
  • Andronova, N. G., and M. E. Schlesinger, 2001: Objective estimation of the probability density function for climate sensitivity. J. Geophys. Res., 106 , 2260522612.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., and J. C. Hargreaves, 2010: Reliability of the CMIP3 ensemble. Geophys. Res. Lett., 37 , L02703. doi:10.1029/2009GL041994.

  • Annan, J. D., J. C. Hargreaves, N. R. Edwards, and R. Marsh, 2005: Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Modell., 8 , 135154.

    • Search Google Scholar
    • Export Citation
  • Barnett, T., and Coauthors, 2005: Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18 , 12911314.

    • Search Google Scholar
    • Export Citation
  • Beltran, C., N. R. Edwards, A. Haurie, J-P. Vial, and D. S. Zachary, 2005: Oracle-based optimization applied to climate model calibration. Environ. Model. Assess., 11 , 3143.

    • Search Google Scholar
    • Export Citation
  • Boe, J. L., A. Hall, and X. Qu, 2009: September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci., 2 , 341343.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19 , 34453482.

  • Cantelaube, P., and J. M. Terres, 2005: Seasonal weather forecasts for crop yield modelling in Europe. Tellus, 57A , 476487.

  • CCSP, 2008: Climate models: An assessment of strengths and limitations. U.S. Climate Change Science Program, Department of Energy Rep. 3.1, 124 pp.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon, et al. Eds., Cambridge University Press, 847–940.

    • Search Google Scholar
    • Export Citation
  • Collins, M., B. B. B. Booth, G. Harris, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2006: Towards quantifying uncertainty in transient climate change. Climate Dyn., 27 , 127147.

    • Search Google Scholar
    • Export Citation
  • Crucifix, M., 2006: Does the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett., 33 , L18701. doi:10.1029/2006GL027137.

    • Search Google Scholar
    • Export Citation
  • Dessai, S., M. Hulme, R. Lempert, and R. A. Pielke Jr., 2009: Climate prediction: A limit to adaptation? Adapting to Climate Change: Thresholds, Values, Governance, W. N. Adger, I. Lorenzoni, and K. L. O’Brien, Eds., Cambridge University Press, 64–78.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., V. Pavan, and D. B. Stephenson, 2003: The skill of multi-model seasonal forecasts of the wintertime North Atlantic Oscillation. Climate Dyn., 21 , 501514.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112 , D16303. doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Forest, C. E., P. H. Stone, A. P. Sokolov, M. R. Allen, and M. D. Webster, 2002: Quantifying uncertainties in climate system properties with the use of recent climate observations. Science, 295 , 113117.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and L. M. Leslie, 1987: Combining predictive schemes in short-term forecasting. Mon. Wea. Rev., 115 , 16401644.

  • Frame, D. J., B. B. B. Booth, J. A. Kettleborough, D. A. Stainforth, J. M. Gregory, M. Collins, and M. R. Allen, 2005: Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Lett., 32 , L09702. doi:10.1029/2004GL022241.

    • Search Google Scholar
    • Export Citation
  • Frame, D. J., D. A. Stone, P. A. Stott, and M. R. Allen, 2006: Alternatives to stabilization scenarios. Geophys. Res. Lett., 33 , L14707. doi:10.1029/2006GL025801.

    • Search Google Scholar
    • Export Citation
  • Furrer, R., R. Knutti, S. R. Sain, D. W. Nychka, and G. A. Meehl, 2007a: Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys. Res. Lett., 34 , L06711. doi:10.1029/2006GL027754.

    • Search Google Scholar
    • Export Citation
  • Furrer, R., S. R. Sain, D. Nychka, and G. A. Meehl, 2007b: Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ. Ecol. Stat., 14 , 249266.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., R. J. Allan, and T. J. Ansell, 2005: Detection of external influence on sea level pressure with a multi-model ensemble. Geophys. Res. Lett., 32 , L19714. doi:10.1029/2005GL023640.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and R. Francisco, 2001: Uncertainties in the prediction of regional climate change. Global Change and Protected Areas, G. Visconti et al., Eds., Advances in Global Change Research, Kluwer Academic, 127–139.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Climate, 15 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 2003: Probability of regional climate change based on the reliability ensemble averaging (REA) method. Geophys. Res. Lett., 30 , 1629. doi:10.1029/2003GL017130.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113 , D06104. doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Greene, A. M., L. Goddard, and U. Lall, 2006: Probabilistic multimodel regional temperature change projections. J. Climate, 19 , 43264346.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting. Part I: Basic concept. Tellus, 57A , 219233.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33 , L03502. doi:10.1029/2005GL025127.

    • Search Google Scholar
    • Export Citation
  • Hargreaves, J. C., A. Abe-Ouchi, and J. D. Annan, 2007: Linking glacial and future climates through an ensemble of GCM simulations. Climate Past, 3 , 7787.

    • Search Google Scholar
    • Export Citation
  • Harris, G., D. M. H. Sexton, B. B. B. Booth, M. Collins, J. M. Murphy, and M. J. Webb, 2006: Frequency distributions of transient regional climate change from perturbed physics ensembles of general circulation model simulations. Climate Dyn., 27 , 357375.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., T. J. Crowley, W. T. Hyde, and D. J. Frame, 2006: Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 440 , 10291032.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon, et al., Eds., Cambridge University Press, 663–745.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86 , 16091614.

  • Jun, M., R. Knutti, and D. W. Nychka, 2008a: Local eigenvalue analysis of CMIP3 climate model errors. Tellus, 60A , 9921000.

  • Jun, M., R. Knutti, and D. W. Nychka, 2008b: Spatial analysis to quantify numerical model bias and dependence: How many climate models are there? J. Amer. Stat. Assoc., 103 , 934947. doi:10.1198/016214507000001265.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2008a: Should we believe model predictions of future climate change? Philos. Trans. Roy. Soc., 366A , 46474664. doi:10.1098/rsta.2008.0169.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2008b: Why are climate models reproducing the observed global surface warming so well? Geophys. Res. Lett., 35 , L18704. doi:10.1029/2008GL034932.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and G. C. Hegerl, 2008: The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci., 1 , 735743.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., T. F. Stocker, F. Joos, and G-K. Plattner, 2002: Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature, 416 , 719723.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., T. F. Stocker, F. Joos, and G-K. Plattner, 2003: Probabilistic climate change projections using neural networks. Climate Dyn., 21 , 257272.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., G. A. Meehl, M. R. Allen, and D. A. Stainforth, 2006: Constraining climate sensitivity from the seasonal cycle in surface temperature. J. Climate, 19 , 42244233.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and Coauthors, 2008: A review of uncertainties in global temperature projections over the twenty-first century. J. Climate, 21 , 26512663.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and G. J. Boer, 2001: CMIP1 evaluation and intercomparison of coupled climate models. Climate Dyn., 17 , 83106.

  • Lempert, R. J., and M. E. Schlesinger, 2000: Robust strategies for abating climate change. Climatic Change, 45 , 387401.

  • Liu, Z., and Coauthors, 2009: Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325 , 310314.

    • Search Google Scholar
    • Export Citation
  • Lopez, A., C. Tebaldi, M. New, D. A. Stainforth, M. R. Allen, and J. A. Kettleborough, 2006: Two approaches to quantifying uncertainty in global temperature changes. J. Climate, 19 , 47854796.

    • Search Google Scholar
    • Export Citation
  • Maxino, C. C., B. J. McAvaney, A. J. Pitman, and S. E. Perkins, 2008: Ranking the AR4 climate models over the Murray-Darling Basin using simulated maximum temperature, minimum temperature and precipitation. Int. J. Climatol., 28 , 10971112.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007a: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon, Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007b: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., S. C. B. Raper, and T. M. L. Wigley, 2008: Emulating IPCC AR4 atmosphere-ocean and carbon cycle models for projecting global-mean, hemispheric and land/ocean temperatures: MAGICC 6.0. Atmos. Chem. Phys. Discuss., 8 , 61536272.

    • Search Google Scholar
    • Export Citation
  • Min, S-K., and A. Hense, 2006: A Bayesian approach to climate model evaluation and multi-model averaging with an application to global mean surface temperatures from IPCC AR4 coupled climate models. Geophys. Res. Lett., 33 , L08708. doi:10.1029/2006GL025779.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 429 , 768772.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., B. B. B. Booth, M. Collins, G. R. Harris, D. M. H. Sexton, and M. J. Webb, 2007: A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos. Trans. Roy. Soc., 365A , 19932028.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, Eds. 2000: IPCC Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • Oreskes, N., K. Shrader-Frechette, and K. Belitz, 1994: Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263 , 641646.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. J. Doblas-Reyes, R. Hagedorn, and A. Weisheimer, 2005: Probabilistic prediction of climate using multi-model ensembles: From basics to applications. Philos. Trans. Roy. Soc., 360B , 19911998.

    • Search Google Scholar
    • Export Citation
  • Parker, W. S., 2006: Understanding pluralism in climate modeling. Found. Sci., 11 , 349368.

  • Peña, M., and H. Van den Dool, 2008: Consolidation of multimodel forecasts by ridge regression: Application to Pacific sea surface temperature. J. Climate, 21 , 65216538.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20 , 43564376.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., A. J. Pitman, and S. A. Sisson, 2009: Smaller projected increases in 20-year temperature returns over Australia in skill-selected climate models. Geophys. Res. Lett., 36 , L06710. doi:10.1029/2009GL037293.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and P. J. Gleckler, 2006: Evaluation of continental precipitation in 20th century climate simulations: The utility of multimodel statistics. Water Resour. Res., 42 , W03202. doi:10.1029/2005WR004313.

    • Search Google Scholar
    • Export Citation
  • Piani, C., D. J. Frame, D. A. Stainforth, and M. R. Allen, 2005: Constraints on climate change from a multi-thousand member ensemble of simulations. Geophys. Res. Lett., 32 , L23825. doi:10.1029/2005GL024452.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, B. D. Santer, and P. J. Gleckler, 2009: Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA, 106 , 84418446.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., C. P. Batstone, R. J. P. Hofmann, K. E. Taylor, and P. J. Glecker, 2008: Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J. Geophys. Res., 113 , D14209. doi:10.1029/2007JD009334.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and S. E. Perkins, 2008: Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based on skill-selected AR(4) models. Earth Interactions, 12 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Plattner, G-K., and Coauthors, 2008: Long-term climate commitments projected with climate–carbon cycle models. J. Climate, 21 , 27212751.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2007: How reliable are climate models? Tellus, 59A , 229.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89 , 303311.

  • Robertson, A. W., S. Kirshner, and P. Smyth, 2004: Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. J. Climate, 17 , 44074424.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., and Coauthors, 2008: Constraints on model response to greenhouse gas forcing and the role of subgrid-scale processes. J. Climate, 21 , 23842400.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309 , 15511556.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2009: Incorporating model quality information in climate change detection and attribution studies. Proc. Natl. Acad. Sci. USA, 106 , 1477814783.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Latif, and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32 , L23710. doi:10.1029/2005GL024368.

    • Search Google Scholar
    • Export Citation
  • Smith, I., and E. Chandler, 2010: Refining rainfall projections for the Murray Darling Basin of south-east Australia—The effect of sampling model results based on performance. Climatic Change, in press.

    • Search Google Scholar
    • Export Citation
  • Smith, L. A., 2002: What might we learn from climate forecasts? Proc. Natl. Acad. Sci. USA, 99 , 24872492. , doi:10.1007/s10584-009-9757-1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., C. Tebaldi, D. W. Nychka, and L. O. Mearns, 2009: Bayesian modeling of uncertainty in ensembles of climate models. J. Amer. Stat. Assoc., 104 , 97116. doi:10.1198/jasa.2009.0007.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19 , 33543360.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., G. K. Plattner, R. Knutti, and P. Friedlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA, 106 , 17041709.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433 , 403406.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., M. R. Allen, E. R. Tredger, and L. A. Smith, 2007: Confidence, uncertainty and decision-support relevance in climate predictions. Philos. Trans. Roy. Soc., 365A , 21452161.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and J. A. Kettleborough, 2002: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature, 416 , 723726.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl, and B. D. Santer, 2006: Observational constraints on past attributable warming and predictions of future global warming. J. Climate, 19 , 30553069.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. Lawrence Livermore National Laboratory Rep., 32 pp. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf].

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc., 365A , 20532075.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and B. Sansó, 2009: Joint projections of temperature and precipitation change from multiple climate models: A hierarchical Bayesian approach. J. Roy. Stat. Soc., 172A , 83106.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., L. O. Mearns, D. Nychka, and R. L. Smith, 2004: Regional probabilities of precipitation change: A Bayesian analysis of multimodel simulations. Geophys. Res. Lett., 31 , L24213. doi:10.1029/2004GL021276.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. W. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18 , 15241540.

    • Search Google Scholar
    • Export Citation
  • Thomson, M. C., F. J. Doblas-Reyes, S. J. Mason, R. Hagedorn, S. J. Connor, T. Phindela, A. P. Morse, and T. N. Palmer, 2006: Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature, 439 , 576579.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1 , 8195.

  • Watterson, I. G., 2008: Calculation of probability density functions for temperature and precipitation change under global warming. J. Geophys. Res., 113 , D12106. doi:10.1029/2007JD009254.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and V. Eyring, 2008: Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos. Chem. Phys., 8 , 56995713.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2008: Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quart. J. Roy. Meteor. Soc., 134 , 241260.

    • Search Google Scholar
    • Export Citation
  • Whetton, P., I. Macadam, J. Bathols, and J. O’Grady, 2007: Assessment of the use of current climate patterns to evaluate regional enhanced greenhouse response patterns of climate models. Geophys. Res. Lett., 34 , L14701. doi:10.1029/2007GL030025.

    • Search Google Scholar
    • Export Citation
  • Yun, W. T., L. Stefanova, and T. N. Krishnamurti, 2003: Improvement of the multimodel superensemble technique for seasonal forecasts. J. Climate, 16 , 38343840.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7459 2869 352
PDF Downloads 3794 931 78