Future Change of North Atlantic Tropical Cyclone Tracks: Projection by a 20-km-Mesh Global Atmospheric Model

Hiroyuki Murakami Advanced Earth Science and Technology Organization, Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Hiroyuki Murakami in
Current site
Google Scholar
PubMed
Close
and
Bin Wang Department of Meteorology, and International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Possible future change in tropical cyclone (TC) activity over the North Atlantic (NA) was investigated by comparison of 25-yr simulations of the present-day climate and future change under the A1B emission scenario using a 20-km-mesh Meteorological Research Institute (MRI) and Japan Meteorological Agency (JMA) atmospheric general circulation model. The present-day simulation reproduces many essential features of observed climatology and interannual variability in TC frequency of occurrence and tracks over the NA. For the future projection, the model is driven by the sea surface temperature (SST) that includes a trend projected by the most recent Intergovernmental Panel on Climate Change (IPCC) multimodel ensemble and a year-to-year variation derived from the present-day climate. A major finding is that the future change of total TC counts in the NA is statistically insignificant, but the frequency of TC occurrence will decrease in the tropical western NA (WNA) and increase in the tropical eastern NA (ENA) and northwestern NA (NWNA). The projected change in TC tracks suggests a reduced probability of TC landfall over the southeastern United States, and an increased influence of TCs on the northeastern United States. The track changes are not due to changes of large-scale steering flows; instead, they are due to changes in TC genesis locations. The increase in TC genesis in the ENA arises from increasing background ascending motion and convective available potential energy. In contrast, the reduced TC genesis in the WNA is attributed to decreases in midtropospheric relative humidity and ascending motion caused by remotely forced anomalous descent. This finding indicates that the impact of remote dynamical forcing is greater than that of local thermodynamical forcing in the WNA. The increased frequency of TC occurrence in the NWNA is attributed to reduced vertical wind shear and the pronounced local warming of the ocean surface. These TC changes appear to be most sensitive to future change in the spatial distribution of rising SST. Given that most IPCC models project a larger increase in SST in the ENA than in the WNA, the projected eastward shift in TC genesis is likely to be robust.

+ Current affiliation: Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Corresponding author address: Hiroyuki Murakami, Meteorological Research Institute (MRI), 1-1, Nagamine, Tsukuba-shi, Ibaraki 305-0052, Japan. Email: himuraka@mri-jma.go.jp

Abstract

Possible future change in tropical cyclone (TC) activity over the North Atlantic (NA) was investigated by comparison of 25-yr simulations of the present-day climate and future change under the A1B emission scenario using a 20-km-mesh Meteorological Research Institute (MRI) and Japan Meteorological Agency (JMA) atmospheric general circulation model. The present-day simulation reproduces many essential features of observed climatology and interannual variability in TC frequency of occurrence and tracks over the NA. For the future projection, the model is driven by the sea surface temperature (SST) that includes a trend projected by the most recent Intergovernmental Panel on Climate Change (IPCC) multimodel ensemble and a year-to-year variation derived from the present-day climate. A major finding is that the future change of total TC counts in the NA is statistically insignificant, but the frequency of TC occurrence will decrease in the tropical western NA (WNA) and increase in the tropical eastern NA (ENA) and northwestern NA (NWNA). The projected change in TC tracks suggests a reduced probability of TC landfall over the southeastern United States, and an increased influence of TCs on the northeastern United States. The track changes are not due to changes of large-scale steering flows; instead, they are due to changes in TC genesis locations. The increase in TC genesis in the ENA arises from increasing background ascending motion and convective available potential energy. In contrast, the reduced TC genesis in the WNA is attributed to decreases in midtropospheric relative humidity and ascending motion caused by remotely forced anomalous descent. This finding indicates that the impact of remote dynamical forcing is greater than that of local thermodynamical forcing in the WNA. The increased frequency of TC occurrence in the NWNA is attributed to reduced vertical wind shear and the pronounced local warming of the ocean surface. These TC changes appear to be most sensitive to future change in the spatial distribution of rising SST. Given that most IPCC models project a larger increase in SST in the ENA than in the WNA, the projected eastward shift in TC genesis is likely to be robust.

+ Current affiliation: Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Corresponding author address: Hiroyuki Murakami, Meteorological Research Institute (MRI), 1-1, Nagamine, Tsukuba-shi, Ibaraki 305-0052, Japan. Email: himuraka@mri-jma.go.jp

Save
  • Anthes, R. A., R. W. Corell, G. Holland, J. W. Hurrel, M. C. MacCracken, and K. E. Trenberth, 2006: Hurricanes and global warming—Potential linkages and consequences. Bull. Amer. Meteor. Soc., 87 , 623628.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19 , 590612.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A , 5773.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A , 539561.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 52 , 233240.

  • Broccoli, A. K., and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17 , 19171920.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18 , 29963006.

  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20 , 48194834.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007b: Tropical cyclone genesis potential index in climate models. Tellus, 59A , 428443.

    • Search Google Scholar
    • Export Citation
  • Chauvin, F., J-F. Royer, and M. Déqué, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dyn., 27 , 377399.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Emanuel, K. A., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19 , 47974802.

  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89 , 347367.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293 , 474479.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasibiennial oscillation influences. Mon. Wea. Rev., 112 , 16491668.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21 , 52045228.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. F. B. Mitchell, and C. A. Senior, 1993: Tropical disturbances in a GCM. Climate Dyn., 8 , 247257.

  • Hatsushika, H., J. Tsutsui, M. Fiorino, and K. Onogi, 2006: Impact of wind profile retrievals on the analysis of tropical cyclones in the JRA-25 reanalysis. J. Meteor. Soc. Japan, 84 , 891905.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., Ed. 1993: Tropical cyclone motion. Global Guide to Tropical Cyclone Forecasting, World Meteorological Organization Tech. Doc. WMO/TD 560, Tropical Cyclone Programme Rep. TCP-31, 337 pp.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Philos. Trans. Roy. Soc., 365A , 26952716.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., P. A. Agudelo, P. J. Webster, and J. Acurry, 2006: Deconvolution of the factors contributing to the increase in global hurricane intensity. Science, 312 , 9497.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 996 pp.

  • Iwasaki, T., S. Yamada, and K. Tada, 1989: A parameterization scheme of orographic gravity wave drag with two different vertical partitionings, part I: Impacts on medium-range forecasts. J. Meteor. Soc. Japan, 67 , 1127.

    • Search Google Scholar
    • Export Citation
  • JMA, 2007: Outline of the operational numerical weather prediction at the Japan Meteorological Agency (appendix to WMO numerical weather prediction progress report). JMA, 194 pp. [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-nwp/index.htm].

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 1999: Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system. Climate Dyn., 15 , 503519.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17 , 34773495.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279 , 10181020.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming condition. Nat. Geosci., 1 , 359364.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., R. Correa-Torres, M. Latif, and G. Daughenbaugh, 1998: The impact of current and possibly future sea surface temperature anomalies on the frequency of Atlantic hurricanes. Tellus, 50A , 186210.

    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi, and R. Mizuta, 2006: Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J. Meteor. Soc. Japan, 84 , 581611.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO180001.

  • Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313 , 452454.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., Y-K. Lim, D. W. Shin, E. P. Chassignet, and S. Cocke, 2008: Atlantic basin seasonal hurricane simulations. J. Climate, 21 , 31913206.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87 .doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., K. A. Emanuel, G. J. Holland, and P. J. Webster, 2007a: Atlantic tropical cyclones revisited. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO360002.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., T. A. Sabbatelli, and U. Neu, 2007b: Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophys. Res. Lett., 34 , L22707. doi:10.1029/2007GL031781.

    • Search Google Scholar
    • Export Citation
  • McDonald, R. E., D. G. Bleaken, D. R. Cresswell, V. D. Pope, and C. A. Senior, 2005: Tropical storms: Representation and diagnosis in climate models and the impacts of climate change. Climate Dyn., 25 , 1936.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and Coauthors, 2006: 20-km-mesh global climate simulations using JMA-GSM model–mean climate states. J. Meteor. Soc. Japan, 84 , 165185.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., Y. Adachi, S. Yukimoto, and S. Kusunoki, 2008: Estimation of the future distribution of sea surface temperature and sea ice using the CMIP3 multi-model ensemble mean. MRI Tech. Rep. 56, 28 pp. [Available at http://www.mrijma.go.jp/Publish/Technical/DATA/VOL_56/56.html].

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and T. Matsumura, 2007: Development of an effective non-linear normal mode initialization method for a high resolution global model. J. Meteor. Soc. Japan, 85 , 187208.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., T. Matsumura, R. Sakai, A. Noda, and S. Kusunoki, 2008: Verification typhoon forecasts for a 20-km-mesh high-resolution global model. J. Meteor. Soc. Japan, 86 , 669698.

    • Search Google Scholar
    • Export Citation
  • Nguyen, K-C., and K. J. E. Walsh, 2001: Interannual, decadal, and transient greenhouse simulation of tropical cyclone-like vortices in a regional climate model of the South Pacific. J. Climate, 14 , 30433054.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85 , 369432.

  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20-km-mesh global atmospheric model: Frequency and wind intensity analysis. J. Meteor. Soc. Japan, 84 , 259276.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 2008: Why weather and climate extremes matter. Weather and Climate Extremes in a Changing Climate, National Climatic Data Center. [Available online at http://www.climatescience.gov/Library/sap/sap3-3/final-report/default.htm].

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., C. Landsea, M. Mayfield, J. Laver, and R. Pasch, 2005: Hurricanes and global warming. Bull. Amer. Meteor. Soc., 86 , 15711575.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and D-M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc, 137–144.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, and D. P. Rowell, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Royer, F-J., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38 , 307343.

    • Search Google Scholar
    • Export Citation
  • Sato, N., P. J. Sellers, D. A. Randall, E. K. Schneider, J. Shukla, J. L. Kinder III, Y-T. Hou, and E. Albertazzi, 1989: Effects of implementing the simple biosphere model (SiB) in a general circulation model. J. Atmos. Sci., 46 , 22572282.

    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., 2006: On evacuation and deaths from Hurricane Katrina. Bull. Amer. Meteor. Soc., 87 , 754756.

  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Delcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43 , 505531.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and T. Aoki, 1989: An infrared radiative scheme for the numerical models of weather and climate. J. Geophys. Res., 94 , 1492314943.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and A. Uchiyama, 1992: Accuracy of the delta-four-stream approximation in inhomogeneous scattering atmospheres. J. Meteor. Soc. Japan, 70 , 10971109.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116 , 435460.

    • Search Google Scholar
    • Export Citation
  • Stowasser, M., Y. Wang, and K. Hamilton, 2007: Tropical cyclone changes in the western North Pacific in a global warming scenario. J. Climate, 20 , 23782396.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology. J. Meteor. Soc. Japan, 80 , 249272.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., H. Murakami, and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. SOLA, 5 , 164167.

    • Search Google Scholar
    • Export Citation
  • Tanaka, T. Y., K. Orito, T. Sekiyaam, K. Shibata, M. Chiba, and H. Tanaka, 2003: MASINGAR, a global tropospheric aerosol chemical transport model coupled with MRI/JMA98 GCM: model description. Pap. Meteor. Geophys., 53 , 119138.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33 , L12704. doi:10.1029/2006GL026894.

    • Search Google Scholar
    • Export Citation
  • Tsutsui, J., 2002: Implications of anthropogenic climate change for tropical cyclone activity. J. Meteor. Soc. Japan, 80 , 4565.

  • Unisys, cited. 2009: Unisys weather hurricane tropical data. [Available online at http://weather.unisys.com/hurricane/].

  • Vecchi, G. A., and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450 , 10661070.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007b: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Vecchi, G. A., and B. J. Soden, 2007c: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34 , L08702. doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21 , 35803600.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., K-C. Nguyen, and J. L. McGregor, 2004: Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Climate Dyn., 22 , 4756.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 , 18441846.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2004: Assessing impact of global warming on tropical cyclone tracks. J. Climate, 17 , 16861698.

  • Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on east Asia. Geophys. Res. Lett., 32 , L18703. doi:10.1029/2005GL022937.

  • Yoshimura, H., and T. Matsumura, 2003: A semi-Lagrangian scheme conservative in the vertical direction. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modeling 33, 319–320.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84 , 405428.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2006: Present-day climate and climate sensitivity in the Meteorological Research Institute Coupled GCM, Version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84 , 333363.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22 , 66536678.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1699 691 56
PDF Downloads 909 256 22