Intraseasonal Variation of Winter Precipitation over the Western United States Simulated by 14 IPCC AR4 Coupled GCMs

Jia-Lin Lin * Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by Jia-Lin Lin in
Current site
Google Scholar
PubMed
Close
,
Toshiaki Shinoda Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Toshiaki Shinoda in
Current site
Google Scholar
PubMed
Close
,
Taotao Qian * Department of Geography, The Ohio State University, Columbus, Ohio
Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

Search for other papers by Taotao Qian in
Current site
Google Scholar
PubMed
Close
,
Weiqing Han Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Paul Roundy University at Albany, State University of New York, Albany, New York

Search for other papers by Paul Roundy in
Current site
Google Scholar
PubMed
Close
, and
Yangxing Zheng ** NOAA/ESRL/CIRES Climate Diagnostics Center, Boulder, Colorado

Search for other papers by Yangxing Zheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates the intraseasonal variation of winter precipitation over the western United States in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of each model’s twentieth-century climate simulation are analyzed. The focus is on the two dominant intraseasonal modes for the western U.S. precipitation: the 40-day mode and the 22-day mode.

The results show that the models tend to overestimate the northern winter (November–April) seasonal mean precipitation over the western United States and Canada. The models also tend to produce overly strong intraseasonal variability in western U.S. wintertime precipitation, in spite of the overly weak tropical intraseasonal variability in most of the models. All models capture both the 40-day mode and the 22-day mode, usually with overly large variances. For the 40-day mode, models tend to reproduce its deep barotropic vertical structure and three-cell horizontal structure, but only 5 of the 14 models capture its northward propagation, and only 2 models simulate its teleconnection with the Madden–Julian oscillation in the tropical Pacific. For the 22-day mode, 8 of the 14 models reproduce its coherent northward propagation, and 9 models capture its teleconnection with precipitation in the tropical Pacific.

Corresponding author address: Dr. Jia-Lin Lin, Dept. of Geography, The Ohio State University, 1105 Derby Hall, 154 North Oval Mall, Columbus, OH 43210. Email: lin.789@osu.edu

Abstract

This study evaluates the intraseasonal variation of winter precipitation over the western United States in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of each model’s twentieth-century climate simulation are analyzed. The focus is on the two dominant intraseasonal modes for the western U.S. precipitation: the 40-day mode and the 22-day mode.

The results show that the models tend to overestimate the northern winter (November–April) seasonal mean precipitation over the western United States and Canada. The models also tend to produce overly strong intraseasonal variability in western U.S. wintertime precipitation, in spite of the overly weak tropical intraseasonal variability in most of the models. All models capture both the 40-day mode and the 22-day mode, usually with overly large variances. For the 40-day mode, models tend to reproduce its deep barotropic vertical structure and three-cell horizontal structure, but only 5 of the 14 models capture its northward propagation, and only 2 models simulate its teleconnection with the Madden–Julian oscillation in the tropical Pacific. For the 22-day mode, 8 of the 14 models reproduce its coherent northward propagation, and 9 models capture its teleconnection with precipitation in the tropical Pacific.

Corresponding author address: Dr. Jia-Lin Lin, Dept. of Geography, The Ohio State University, 1105 Derby Hall, 154 North Oval Mall, Columbus, OH 43210. Email: lin.789@osu.edu

Save
  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113 , 21082121.

  • Branstator, G., 1987: A striking example of the atmosphere’s leading traveling pattern. J. Atmos. Sci., 44 , 23102323.

  • Carr, M. T., and C. S. Bretherton, 2001: Convective momentum transport over the tropical Pacific: Budget estimates. J. Atmos. Sci., 58 , 16731693.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and M-S. Yao, 1993: Efficient cumulus parameterization for long-term climate studies: The GISS scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 181–184.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and R. X. Black, 1990: Life cycles of persistent anomalies. Part II: The development of persistent negative height anomalies over the North Pacific Ocean. Mon. Wea. Rev., 118 , 824846.

    • Search Google Scholar
    • Export Citation
  • Duchan, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 , 10161022.

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132329.

  • Emori, S., T. Nozawa, A. Numaguti, and I. Uno, 2001: Importance of cumulus parameterization for precipitation simulation over East Asia in June. J. Meteor. Soc. Japan, 79 , 939947.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1986: Instability theory and nonlinear evolution of blocks and mature anomalies. Advances in Geophysics, Vol. 29, Academic Press, 277–303.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., and V. Levizzani, 2008: Assessment of global precipitation products. A project of the World Climate Research Programme Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel. WCRP Rep. 128, WMO/TD 1430, 57 pp.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46 , 163174.

  • Hsu, H-H., C-H. Weng, and C-H. Wu, 2004: Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Climate, 17 , 727743.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17 , 10221039.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karoly, D. J., R. A. Plumb, and M. Ting, 1989: Examples of horizontal propagation of quasi-stationary waves. J. Atmos. Sci., 46 , 28022811.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115 , 14071436.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31 , 12321240.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., 1981: Oscillations in a simple equatorial climate system. J. Atmos. Sci., 38 , 248261.

  • Lau, N-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., M. H. Zhang, and B. E. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The sources and strength of equivalent linear damping. J. Atmos. Sci., 62 , 21722188.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., B. E. Mapes, and W. Han, 2008: What are the sources of mechanical damping in Matsuno–Gill type models? J. Climate, 21 , 165179.

    • Search Google Scholar
    • Export Citation
  • Mak, M., 1995: Orthogonal wavelet analysis: Interannual variability in the sea surface temperature. Bull. Amer. Meteor. Soc., 76 , 21792186.

    • Search Google Scholar
    • Export Citation
  • Marcus, S. L., M. Ghil, and J. O. Dickey, 1994: The extratropical 40-day oscillation in the UCLA general circulation model. Part I: Atmospheric angular momentum. J. Atmos. Sci., 51 , 14311446.

    • Search Google Scholar
    • Export Citation
  • Marcus, S. L., M. Ghil, and J. O. Dickey, 1996: The extratropical 40-day oscillation in the UCLA general circulation model. Part II: Spatial structure. J. Atmos. Sci., 53 , 19932014.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 1999: Alternating wet and dry episodes over California and intraseasonal oscillations. Mon. Wea. Rev., 127 , 27592776.

  • Mo, K. C., and R. W. Higgins, 1998a: Tropical influences on California precipitation. J. Climate, 11 , 412430.

  • Mo, K. C., and R. W. Higgins, 1998b: Tropical convection and precipitation regimes in the western United States. J. Climate, 11 , 24042423.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. Nogues-Paegle, 2005: Pan-America. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K. M. Lau and D. Waliser, Eds., Springer-Praxis, 95–124.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107 , 9941013.

  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Pan, D-M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124 , 949981.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere–ocean model for transient climate change studies. Atmos.–Ocean, 33 , 683730.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., 1986: The structure, energetics and evolution of the dominant frequency-dependent three-dimensional atmospheric modes. J. Atmos. Sci., 43 , 12101237.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and C. K. Park, 1991: Low-frequency intraseasonal tropical–extratropical interactions. J. Atmos. Sci., 48 , 629650.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. Suarez, C. K. Park, and S. Moorthi, 1993: GCM simulations of intraseasonal variability in the Pacific/North American region. J. Atmos. Sci., 50 , 19912007.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40 , 13631392.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, J., S. Gadgil, and P. J. Webster, 1993: Meridional propagation of large-scale monsoon convective zones. Meteor. Atmos. Phys., 52 , 1535.

    • Search Google Scholar
    • Export Citation
  • Tiedke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60-day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66 , 883901.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40 , 21102124.

  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113 , 941961.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the CCC-GCM. Atmos.–Ocean, 3 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 894 708 58
PDF Downloads 104 45 2