How Much Do Different Land Models Matter for Climate Simulation? Part I: Climatology and Variability

Jiangfeng Wei Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Jiangfeng Wei in
Current site
Google Scholar
PubMed
Close
,
Paul A. Dirmeyer Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Paul A. Dirmeyer in
Current site
Google Scholar
PubMed
Close
,
Zhichang Guo Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Zhichang Guo in
Current site
Google Scholar
PubMed
Close
,
Li Zhang Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Li Zhang in
Current site
Google Scholar
PubMed
Close
, and
Vasubandhu Misra Department of Meteorology and Center for Ocean–Atmosphere Prediction Studies, The Florida State University, Tallahassee, Florida

Search for other papers by Vasubandhu Misra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An atmospheric general circulation model (AGCM) is coupled to three different land surface schemes (LSSs), both individually and in combination (i.e., the LSSs receive the same AGCM forcing each time step and the averaged upward surface fluxes are passed back to the AGCM), to study the uncertainty of simulated climatologies and variabilities caused by different LSSs. This tiling of the LSSs is done to study the uncertainty of simulated mean climate and climate variability caused by variations between LSSs. The three LSSs produce significantly different surface fluxes over most of the land, no matter whether they are coupled individually or in combination. Although the three LSSs receive the same atmospheric forcing in the combined experiment, the inter-LSS spread of latent heat flux can be larger or smaller than the individually coupled experiment, depending mostly on the evaporation regime of the schemes in different regions. Differences in precipitation are the main reason for the different latent heat fluxes over semiarid regions, but for sensible heat flux, the atmospheric differences and LSS differences have comparable contributions. The influence of LSS uncertainties on the simulation of surface temperature is strongest in dry seasons, and its influence on daily maximum temperature is stronger than on minimum temperature. Land–atmosphere interaction can dampen the impact of LSS uncertainties on surface temperature in the tropics, but can strengthen their impact in middle to high latitudes. Variations in the persistence of surface heat fluxes exist among the LSSs, which, however, have little impact on the global pattern of precipitation persistence. The results provide guidance to future diagnosis of model uncertainties related to LSSs.

Corresponding author address: Jiangfeng Wei, COLA/IGES, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: jianfeng@cola.iges.org

Abstract

An atmospheric general circulation model (AGCM) is coupled to three different land surface schemes (LSSs), both individually and in combination (i.e., the LSSs receive the same AGCM forcing each time step and the averaged upward surface fluxes are passed back to the AGCM), to study the uncertainty of simulated climatologies and variabilities caused by different LSSs. This tiling of the LSSs is done to study the uncertainty of simulated mean climate and climate variability caused by variations between LSSs. The three LSSs produce significantly different surface fluxes over most of the land, no matter whether they are coupled individually or in combination. Although the three LSSs receive the same atmospheric forcing in the combined experiment, the inter-LSS spread of latent heat flux can be larger or smaller than the individually coupled experiment, depending mostly on the evaporation regime of the schemes in different regions. Differences in precipitation are the main reason for the different latent heat fluxes over semiarid regions, but for sensible heat flux, the atmospheric differences and LSS differences have comparable contributions. The influence of LSS uncertainties on the simulation of surface temperature is strongest in dry seasons, and its influence on daily maximum temperature is stronger than on minimum temperature. Land–atmosphere interaction can dampen the impact of LSS uncertainties on surface temperature in the tropics, but can strengthen their impact in middle to high latitudes. Variations in the persistence of surface heat fluxes exist among the LSSs, which, however, have little impact on the global pattern of precipitation persistence. The results provide guidance to future diagnosis of model uncertainties related to LSSs.

Corresponding author address: Jiangfeng Wei, COLA/IGES, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: jianfeng@cola.iges.org

Save
  • Bagnoud, N., A. J. Pitman, B. McAvaney, and N. J. Holbrook, 2005: The contribution of the land surface energy balance complexity to differences in means, variances and extremes using the AMIP-II methodology. Climate Dyn., 25 , 171188. doi:10.1007/s00382-005-0004-9.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1991: Interpretation of snow-climate feedback as produced by 17 general circulation models. Science, 253 , 888892.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101 , (D8). 1279112794.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res., 107 , 4664. doi:10.1029/2001JD001365.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1994: Mechanisms by which surface drying perturbs tropical precipitation fields. J. Climate, 7 , 400413.

  • Cornwell, A. R., and L. D. D. Harvey, 2008: Simulating AOGCM soil moisture using an off-line Thornthwaite potential evapotranspiration–based land surface scheme. Part I: Control runs. J. Climate, 21 , 30973117.

    • Search Google Scholar
    • Export Citation
  • Crossley, J. F., J. Polcher, P. M. Cox, N. Gedney, and S. Planton, 2000: Uncertainties linked to land surface processes in climate change simulations. Climate Dyn., 16 , 949961.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12 , 24512473.

    • Search Google Scholar
    • Export Citation
  • De Haan, L. L., M. Kanamitsu, C-H. Lu, and J. O. Roads, 2007: A comparison of the Noah and OSU land surface models in the ECPC Seasonal Forecast Model. J. Hydrometeor., 8 , 10311048.

    • Search Google Scholar
    • Export Citation
  • Desborough, C. E., A. J. Pitman, and B. J. McAvaney, 2001: Surface energy balance complexity in GCM land surface models. Part II: Coupled simulations. Climate Dyn., 17 , 615626.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and F. J. Zeng, 1999: An update to the distribution and treatment of vegetation and soil properties in SSiB. Center for Ocean–Land–Atmosphere Studies Tech. Rep. 78, 25 pp.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87 , 13811397.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gates, W., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73 , 19621970.

  • Gedney, N., P. M. Cox, H. Douville, J. Polcher, and P. J. Valdes, 2000: Characterizing GCM land surface schemes to understand their responses to climate change. J. Climate, 13 , 30663079.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and P. A. Dirmeyer, 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 1. Intermodel comparison. J. Geophys. Res., 111 , D22S02. doi:10.1029/2006JD007233.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, Z-Z. Hu, X. Gao, and M. Zhao, 2006a: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111 , D22S03. doi:10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006b: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7 , 611625.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., A. J. Pitman, P. K. Love, P. Irannejad, and T. Chen, 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76 , 489503.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and Coauthors, 1996: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS): 1992 to 1995. Climate Dyn., 12 , 849859.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., P. Irannejad, K. McGuffie, and A. J. Pitman, 2003: Predicting land-surface climates-better skill or moving targets? Geophys. Res. Lett., 30 , 1777. doi:10.1029/2003GL017387.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2004: Why has the land memory changed? J. Climate, 17 , 32363243.

  • Irannejad, P., A. Henderson-Sellers, and S. Sharmeen, 2003: Importance of land-surface parameterization for latent heat simulation in global atmospheric models. Geophys. Res. Lett., 30 , 1904. doi:10.1029/2003GL018044.

    • Search Google Scholar
    • Export Citation
  • Karl, T., and Coauthors, 1993: A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74 , 10071023.

    • Search Google Scholar
    • Export Citation
  • Kato, H., M. Rodell, F. Beyrich, H. Cleugh, E. van Gorsel, and H. Liu, 2007: Sensitivity of land surface simulations to model physics, land characteristics, and forcings, at four CEOP sites. J. Meteor. Soc. Japan, 85A , 187204.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., and Coauthors, 1997: The COLA atmosphere-biosphere general circulation model. Vol. 1: Formulation. Center for Ocean–Land–Atmosphere Studies Tech. Rep. 51, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29 , 1367. doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Koren, V., J. Schaake, K. Mitchell, Q-Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 , (D16). 1956919585.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97 , 26972716.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1996: The influence of land surface moisture retention on precipitation statistics. J. Climate, 9 , 25512567.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2 , 558570.

  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. Van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 , 1241. doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

    • Search Google Scholar
    • Export Citation
  • Leplastrier, M., A. J. Pitman, H. Gupta, and Y. Xia, 2002: Exploring the relationship between complexity and performance in a land surface model using the multicriteria method. J. Geophys. Res., 107 , 4443. doi:10.1029/2001JD000931.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and Coauthors, 1998: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment: 2. Spatial and temporal analysis of energy fluxes. Global Planet. Change, 19 , 137159.

    • Search Google Scholar
    • Export Citation
  • Misra, V., and Coauthors, 2007: Validating and understanding ENSO simulation in two coupled climate models. Tellus, 59A , 292308.

  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert. A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., Z-L. Yang, R. E. Dickinson, and L. E. Gulden, 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110 , D21106. doi:10.1029/2005JD006111.

    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., Z-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112 , D07103. doi:10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 173 pp.

  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113 , G01021. doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pan, H-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary layer developments. Bound.-Layer Meteor., 38 , 185202.

  • Phillips, T., 1994: A summary documentation of the AMIP models. PCMDI Rep. 18, Lawrence Livermore National Laboratory UCRL-ID-116348, 343 pp.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and A. Henderson-Sellers, 1998: Recent progress and results from the project for the intercomparison of land surface parameterization schemes. J. Hydrol., 212–213 , 128135.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 1999: Key results and implications from phase 1(c) of the Project for Intercomparison of Land-Surface Parameterization Schemes. Climate Dyn., 15 , 673684.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., B. J. McAvaney, N. Bagnoud, and B. Cheminat, 2004: Are inter-model differences in AMIP-II near surface air temperature means and extremes explained by land surface energy balance complexity? Geophys. Res. Lett., 31 , L05205. doi:10.1029/2003GL019233.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36 , L14814. doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Polcher, J., and Coauthors, 1998: Importance of land-surface processes for the uncertainties of climate change: A European Project. GEWEX News, No. 8, International GEWEX Project Office, Silver Spring, MD, 11–13.

    • Search Google Scholar
    • Export Citation
  • Qu, W. Q., and A. Henderson-Sellers, 1998: Comparing the scatter in PILPS off-line experiments with that in AMIP I coupled experiments. Global Planet. Change, 19 , 209223.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., H. Hauschild, W. Reuth, and U. Schneider, 1994: Terrestrial precipitation analysis: Operational method and required density of point measurements. Global Precipitation and Climate Change, M. Desbois, F. Desalmond, Eds., NATO ASI Series I, Vol. 26, Springer-Verlag, 173–186.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: Modelling the exchanges of energy, water and carbon between continents and the atmosphere. Science, 275 , 502509.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., A. Ducharne, R. Koster, and M. Suarez, 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2 , 228242.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., and A. Henderson-Sellers, 1998: Intercomparisons of land-surface parameterizations coupled to a limited area forecast model. Global Planet. Change, 19 , 247260.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012. doi:10.1256/qj.04.176.

  • Wei, J., R. E. Dickinson, and N. Zeng, 2006: Climate variability in a simple model of warm climate land-atmosphere interaction. J. Geophys. Res., 111 , G03009. doi:10.1029/2005JG000096.

    • Search Google Scholar
    • Export Citation
  • Wei, J., R. E. Dickinson, and H. Chen, 2008a: A negative soil moisture–precipitation relationship and its causes. J. Hydrometeor., 9 , 13641376.

    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, and Z. Guo, 2008b: Sensitivities of soil wetness simulation to uncertainties in precipitation and radiation. Geophys. Res. Lett., 35 , L15703. doi:10.1029/2008GL034494.

    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, and Z. Guo, 2009: Sensitivities of simulated soil wetness and surface fluxes to uncertainties in atmospheric forcing. Center for Ocean–Land–Atmosphere Studies Tech. Rep. 278, 25 pp. [Available online at ftp://grads.iges.org/pub/ctr/CTR278_ms.pdf].

    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, and Z. Guo, 2010: How much do different land models matter for climate simulation? Part II: A decomposed view of the land–atmosphere coupling strength. J. Climate, 23 , 31353145.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 141 pp.

  • Xie, P., J. E. Janowiak, P. A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16 , 21972214.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., H-M. H. Juang, W-P. Li, S. Prince, R. DeFries, Y. Jiao, and R. Vasic, 2004: Role of land surface processes in monsoon development: East Asia and West Africa. J. Geophys. Res., 109 , D03105. doi:10.1029/2003JD003556.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., F. de Sales, W-P. Li, C. R. Mechoso, C. A. Nobre, and H-M. Juang, 2006: Role of land surface processes in South American monsoon development. J. Climate, 19 , 741762.

    • Search Google Scholar
    • Export Citation
  • Yang, F., A. Kumar, W. Wang, H. M. H. Juang, and M. Kanamitsu, 2001: Snow–albedo feedback and seasonal climate variability over North America. J. Climate, 14 , 42454248.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., and J. D. Neelin, 1999: A land–atmosphere interaction theory for the tropical deforestation problem. J. Climate, 12 , 857872.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. E. Dickinson, Y. Tian, R. S. Vose, and Y. Dai, 2007: Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the Sahel. Proc. Natl. Acad. Sci. USA, 104 , 1793717942.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. Dickinson, P. Dirmeyer, H. Chen, Y. Dai, and Y. Tian, 2008: Asymmetric response of maximum and minimum temperatures to soil emissivity change over the Northern African Sahel in a GCM. Geophys. Res. Lett., 35 , L05402. doi:10.1029/2007GL032953.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1427 1170 74
PDF Downloads 254 67 10