Decadal Prediction in the Pacific Region

Gerald A. Meehl National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Gerald A. Meehl in
Current site
Google Scholar
PubMed
Close
,
Aixue Hu National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Aixue Hu in
Current site
Google Scholar
PubMed
Close
, and
Claudia Tebaldi National Center for Atmospheric Research,* Boulder, Colorado, and Climate Central, Princeton, New Jersey

Search for other papers by Claudia Tebaldi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A “perfect model” configuration with a global coupled climate model 30-member ensemble is used to address decadal prediction of Pacific SSTs. All model data are low-pass filtered to focus on the low-frequency decadal component. The first three EOFs in the twentieth-century simulation, representing nearly 80% of the total variance, are used as the basis for early twenty-first-century predictions. The first two EOFs represent the forced trend and the interdecadal Pacific oscillation (IPO), respectively, as noted in previous studies, and the third has elements of both trend and IPO patterns. The perfect model reference simulation, the target for the prediction, is taken as the experiment that ran continuously from the twentieth to twenty-first century using anthropogenic and natural forcings for the twentieth century and the A1B scenario for the twenty-first century. The other 29 members use a perturbation in the atmosphere at year 2000 and are run until 2061. Since the IPO has been recognized as a dominant contributor to decadal variability in the Pacific, information late in the twentieth century and early in the twenty-first century is used to select a subset of ensemble members that are more skillful in tracking the time evolution of the IPO (EOF2) in relation to a notional start date of 2010. Predictions for the 19-yr period centered on the year 2020 use that subset of ensemble members to construct Pacific SST patterns based on the predicted evolution of the first three EOFs. Compared to the perfect model reference simulation, the predictions show some skill for Pacific SST predictions with anomaly pattern correlations greater than +0.5. An application of the Pacific SST prediction is made to precipitation over North America and Australia. Even though there are additional far-field influences on Pacific SSTs and North American and Australian precipitation involving the Atlantic multidecadal oscillation (AMO) in the Atlantic, and Indian Ocean and South Asian monsoon variability, there is qualitative skill for the pattern of predicted precipitation over North America and Australia using predicted Pacific SSTs. This exercise shows that, in the presence of a large forced trend like that in the large ensemble, much of Pacific region decadal predictability about 20 years into the future arises from increasing greenhouse gases.

+ Current affiliation: Climate Central, Princeton, New Jersey, and University of British Columbia, Vancouver, British Columbia, Canada

Corresponding author address: Gerald A. Meehl, NCAR, P.O. Box 3000, Boulder CO 80307. Email: meehl@ncar.ucar.edu

Abstract

A “perfect model” configuration with a global coupled climate model 30-member ensemble is used to address decadal prediction of Pacific SSTs. All model data are low-pass filtered to focus on the low-frequency decadal component. The first three EOFs in the twentieth-century simulation, representing nearly 80% of the total variance, are used as the basis for early twenty-first-century predictions. The first two EOFs represent the forced trend and the interdecadal Pacific oscillation (IPO), respectively, as noted in previous studies, and the third has elements of both trend and IPO patterns. The perfect model reference simulation, the target for the prediction, is taken as the experiment that ran continuously from the twentieth to twenty-first century using anthropogenic and natural forcings for the twentieth century and the A1B scenario for the twenty-first century. The other 29 members use a perturbation in the atmosphere at year 2000 and are run until 2061. Since the IPO has been recognized as a dominant contributor to decadal variability in the Pacific, information late in the twentieth century and early in the twenty-first century is used to select a subset of ensemble members that are more skillful in tracking the time evolution of the IPO (EOF2) in relation to a notional start date of 2010. Predictions for the 19-yr period centered on the year 2020 use that subset of ensemble members to construct Pacific SST patterns based on the predicted evolution of the first three EOFs. Compared to the perfect model reference simulation, the predictions show some skill for Pacific SST predictions with anomaly pattern correlations greater than +0.5. An application of the Pacific SST prediction is made to precipitation over North America and Australia. Even though there are additional far-field influences on Pacific SSTs and North American and Australian precipitation involving the Atlantic multidecadal oscillation (AMO) in the Atlantic, and Indian Ocean and South Asian monsoon variability, there is qualitative skill for the pattern of predicted precipitation over North America and Australia using predicted Pacific SSTs. This exercise shows that, in the presence of a large forced trend like that in the large ensemble, much of Pacific region decadal predictability about 20 years into the future arises from increasing greenhouse gases.

+ Current affiliation: Climate Central, Princeton, New Jersey, and University of British Columbia, Vancouver, British Columbia, Canada

Corresponding author address: Gerald A. Meehl, NCAR, P.O. Box 3000, Boulder CO 80307. Email: meehl@ncar.ucar.edu

Save
  • Arblaster, J. M., G. A. Meehl, and A. Moore, 2002: Interdecadal modulation of Australian rainfall. Climate Dyn., 18 , 519531.

  • Boer, G. J., 2010: Decadal potential predictability of twenty-first century climate. Climate Dyn., in press.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28 , 20772080.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, A. Colman, and R. Washington, 1999: Large-scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño: Decadal and Interdecadal Climate Variability. A. Navarra, Ed., Springer-Verlag, 73–102.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90 , 10951107.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., G. A. Meehl, D. Bader, T. Delworth, B. Kirtman, and B. Wielicki, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90 , 18191832.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., and Q. Wu, 2005: Detection of regional surface temperature trends. J. Climate, 18 , 43374343.

  • Keenlyside, N., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453 , 8488.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and D. Min, 2009: Multimodel ensemble ENSO prediction with CCSM and CFS. Mon. Wea. Rev., 137 , 29082930.

  • Kirtman, B. P., J. Shukla, M. Balmaseda, N. Graham, C. Penland, Y. Xue, and S. Zebiak, cited. 2002: Current status of ENSO forecast skill. A report to the Climate Variability and Predictability (CLIVAR) Numerical Experimentation Group (NEG), CLIVAR Working Group on Seasonal to Interannual Prediction. [Available online at http://www.clivar.org/publications/wg_reports/wgsip/nino3/report.htm].

    • Search Google Scholar
    • Export Citation
  • Knight, J., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32 , L20708. doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Lee, T. C. K., F. W. Zwiers, X. Zhang, and M. Tsao, 2006: Evidence of decadal climate prediction skill resulting from changes in anthropogenic forcing. J. Climate, 19 , 53055318.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multi-decadal Pacific sea surface temperature anomalies. J. Climate, 19 , 16051623.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, W. D. Collins, J. M. Arblaster, A. Hu, L. E. Buja, W. G. Strand, and H. Teng, 2005: How much more global warming and sea level rise? Science, 307 , 17691772.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2006: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J. Climate, 19 , 25972616.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009a: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90 , 14671485.

  • Meehl, G. A., A. Hu, and B. D. Santer, 2009b: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22 , 780792.

    • Search Google Scholar
    • Export Citation
  • Mochizuki, T., and Coauthors, 2010: Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA, 107 , 18331837.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., C. K. Folland, A. A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112 , D18115. doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., J. H. Jungclaus, A. Köhl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO Oceanic Synthesis: Effects on the North Atlantic. J. Climate, 22 , 39263938.

    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15 , 319324.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., M. Suarez, J-K. Schemm, and E. Epstein, 1992: Dynamically stratified Monte Carlo forecasting. Mon. Wea. Rev., 120 , 10771088.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22 , 52515272.

    • Search Google Scholar
    • Export Citation
  • Smith, D., S. Cusack, A. Colman, C. Folland, G. Harris, and J. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317 , 796799.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309 , 115118.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., Z. Deng, X. Zhou, Y. Cheng, and D. Chen, 2008: Interdecadal variation of ENSO predictability in multiple models. J. Climate, 21 , 48114833.

    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2010: Initial-value predictability of prominent modes of North Pacific subsurface temperature in a CGCM. Climate Dyn., in press.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20 , 48994919.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23 , 966986.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1060 580 53
PDF Downloads 309 72 5