On the Path of the Gulf Stream and the Atlantic Meridional Overturning Circulation

Terrence M. Joyce Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Terrence M. Joyce in
Current site
Google Scholar
PubMed
Close
and
Rong Zhang NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Rong Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Atlantic meridional overturning circulation (AMOC) simulated in various ocean-only and coupled atmosphere–ocean numerical models often varies in time because of either forced or internal variability. The path of the Gulf Stream (GS) is one diagnostic variable that seems to be sensitive to the amplitude of the AMOC, yet previous modeling studies show a diametrically opposed relationship between the two variables. In this note this issue is revisited, bringing together ocean observations and comparisons with the GFDL Climate Model version 2.1 (CM2.1), both of which suggest a more southerly (northerly) GS path when the AMOC is relatively strong (weak). Also shown are some examples of possible diagnostics to compare various models and observations on the relationship between shifts in GS path and changes in AMOC strength in future studies.

Corresponding author address: Terrence M. Joyce, Mail Stop 21, 360 Woods Hole Rd., Woods Hole Oceanographic Institution, Woods Hole, MA 02556. Email: tjoyce@whoi.edu

Abstract

The Atlantic meridional overturning circulation (AMOC) simulated in various ocean-only and coupled atmosphere–ocean numerical models often varies in time because of either forced or internal variability. The path of the Gulf Stream (GS) is one diagnostic variable that seems to be sensitive to the amplitude of the AMOC, yet previous modeling studies show a diametrically opposed relationship between the two variables. In this note this issue is revisited, bringing together ocean observations and comparisons with the GFDL Climate Model version 2.1 (CM2.1), both of which suggest a more southerly (northerly) GS path when the AMOC is relatively strong (weak). Also shown are some examples of possible diagnostics to compare various models and observations on the relationship between shifts in GS path and changes in AMOC strength in future studies.

Corresponding author address: Terrence M. Joyce, Mail Stop 21, 360 Woods Hole Rd., Woods Hole Oceanographic Institution, Woods Hole, MA 02556. Email: tjoyce@whoi.edu

Save
  • Balmaseda, M. A., G. C. Smith, K. Haines, D. Anderson, T. N. Palmer, and A. Vidard, 2007: Historical reconstruction of the Atlantic Meridional Overturning Circulation from the ECMWF operational ocean reanalysis. Geophys. Res. Lett., 34 , L23615. doi:10.1029/2007GL031645.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., M. Scheinert, J. Dengg, A. Biastoch, and A. Funk, 2006: Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett., 33 , L21S01. doi:10.1029/2006GL026906.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33 , L01702. doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317 , 935938.

    • Search Google Scholar
    • Export Citation
  • Dai, A., A. Hu, G. A. Meehl, W. M. Washington, and W. G. Strand, 2005: Atlantic thermohaline circulation in a coupled model: Unforced variations versus forced changes. J. Climate, 18 , 32703293.

    • Search Google Scholar
    • Export Citation
  • de Coëtlogon, G., C. Frankignoul, M. Bentsen, C. Delon, H. Haak, S. Masina, and A. Pardaens, 2006: Gulf Stream variability in five oceanic general circulation models. J. Phys. Oceanogr., 36 , 21192135.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Dong, B-W., and R. T. Sutton, 2002: Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys. Res. Lett., 29 , 1728. doi:10.1029/2002GL015229.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. de Coëtlogon, T. M. Joyce, and S. Dong, 2001: Gulf Stream variability and ocean–atmosphere interactions. J. Phys. Oceanogr., 31 , 35163529.

    • Search Google Scholar
    • Export Citation
  • Fuglister, F. C., 1955: Alternative analyses of current surveys. Deep-Sea Res., 2 , 213229.

  • Gangopadhyay, A., P. Cornillon, and R. D. Watts, 1992: A test of the Parsons–Veronis hypothesis on the separation of the Gulf Stream. J. Phys. Oceanogr., 22 , 12861301.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., R. Marsh, and S. A. Josey, 2009: On the relationship between the North Atlantic meridional overturning circulation and the surface-forced overturning streamfunction. J. Climate, 22 , 49895002.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic circulation during the 1990s. Science, 304 , 555559.

  • Hogg, N. G., 1992: On the transport of the Gulf Stream between Cape Hatteras and the Grand Banks. Deep-Sea Res., 39 , 12311246.

  • Joyce, T. M., C. Deser, and M. A. Spall, 2000: The relation between decadal variability of Subtropical Mode Water and the North Atlantic Oscillation. J. Climate, 13 , 25502569.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., J. Dunworth-Baker, R. S. Pickart, D. Torres, and S. Waterman, 2005: On the Deep Western Boundary Current south of Cape Cod. Deep-Sea Res. II, 52 , 615625.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., Y-O. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and Kuroshio Extension. J. Climate, 22 , 31773192.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21 , 35213532.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 33 , L17706. doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., and D. Stammer, 2008: Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J. Phys. Oceanogr., 38 , 19131929.

    • Search Google Scholar
    • Export Citation
  • Latif, M., C. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, U. Schweckendiek, and G. Madec, 2006: Is the thermohaline circulation changing? J. Climate, 19 , 46314637.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9 , 24642479.

    • Search Google Scholar
    • Export Citation
  • Peña-Molino, B., and T. M. Joyce, 2008: Variability in the slope water and its relation to the Gulf Stream path. Geophys. Res. Lett., 35 , L03606. doi:10.1029/2007GL032183.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Saenger, C., P. Chang, L. Ji, D. W. Oppo, and A. L. Cohen, 2009: Tropical Atlantic climate response to low-latitude and extratropical sea-surface temperature: A Little Ice Age perspective. Geophys. Res. Lett., 36 , L11703. doi:10.1029/2009GL038677.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1996: Dynamics of the Gulf Stream/Deep Western Boundary Current crossover. Part I: Entrainment and recirculation. J. Phys. Oceanogr., 26 , 21522168.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19 , 13651387.

    • Search Google Scholar
    • Export Citation
  • Thompson, J. D., and W. J. Schmitz, 1989: A limited-area model of the Gulf Stream: Design, initial experiments, and model–data intercomparison. J. Phys. Oceanogr., 19 , 791814.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M. H., J. W. Hurrell, L. Polvani, and H. M. Cullen, 2001: The North Atlantic Oscillation: Past, present, and future. Proc. Natl. Acad. Sci. USA, 98 , 1287612877.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35 , L20705. doi:10.1029/2008GL035463.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18 , 18531860.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2007: The role of bottom vortex stretching on the path of the North Atlantic Western Boundary Current and on the northern recirculation gyre. J. Phys. Oceanogr., 37 , 20532080.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2472 989 89
PDF Downloads 1269 252 34