Compensation between Model Feedbacks and Curtailment of Climate Sensitivity

Peter Huybers Harvard University, Cambridge, Massachusetts

Search for other papers by Peter Huybers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spread in climate sensitivity obtained from 12 general circulation model runs used in the Fourth Assessment of the Intergovernmental Panel on Climate Change indicates a 95% confidence interval of 2.1°–5.5°C, but this reflects compensation between model feedbacks. In particular, cloud feedback strength negatively covaries with the albedo feedback as well as with the combined water vapor plus lapse rate feedback. If the compensation between feedbacks is removed, the 95% confidence interval for climate sensitivity expands to 1.9°–8.0°C. Neither of the quoted 95% intervals adequately reflects the understanding of climate sensitivity, but their differences illustrate that model interdependencies must be understood before model spread can be correctly interpreted.

The degree of negative covariance between feedbacks is unlikely to result from chance alone. It may, however, result from the method by which the feedbacks were estimated, physical relationships represented in the models, or from conditioning the models upon some combination of observations and expectations. This compensation between model feedbacks—when taken together with indications that variations in radiative forcing and the rate of ocean heat uptake play a similar compensatory role in models—suggests that conditioning of the models acts to curtail the intermodel spread in climate sensitivity. Observations used to condition the models ought to be explicitly stated, or there is the risk of doubly calling on data for purposes of both calibration and evaluation. Conditioning the models upon individual expectation (e.g., anchoring to the Charney range of 3° ± 1.5°C), to the extent that it exists, greatly complicates statistical interpretation of the intermodel spread.

Corresponding author address: Peter Huybers, Harvard University, 20 Oxford St., Cambridge, MA 02138. Email: phuybers@fas.harvard.edu

Abstract

The spread in climate sensitivity obtained from 12 general circulation model runs used in the Fourth Assessment of the Intergovernmental Panel on Climate Change indicates a 95% confidence interval of 2.1°–5.5°C, but this reflects compensation between model feedbacks. In particular, cloud feedback strength negatively covaries with the albedo feedback as well as with the combined water vapor plus lapse rate feedback. If the compensation between feedbacks is removed, the 95% confidence interval for climate sensitivity expands to 1.9°–8.0°C. Neither of the quoted 95% intervals adequately reflects the understanding of climate sensitivity, but their differences illustrate that model interdependencies must be understood before model spread can be correctly interpreted.

The degree of negative covariance between feedbacks is unlikely to result from chance alone. It may, however, result from the method by which the feedbacks were estimated, physical relationships represented in the models, or from conditioning the models upon some combination of observations and expectations. This compensation between model feedbacks—when taken together with indications that variations in radiative forcing and the rate of ocean heat uptake play a similar compensatory role in models—suggests that conditioning of the models acts to curtail the intermodel spread in climate sensitivity. Observations used to condition the models ought to be explicitly stated, or there is the risk of doubly calling on data for purposes of both calibration and evaluation. Conditioning the models upon individual expectation (e.g., anchoring to the Charney range of 3° ± 1.5°C), to the extent that it exists, greatly complicates statistical interpretation of the intermodel spread.

Corresponding author address: Peter Huybers, Harvard University, 20 Oxford St., Cambridge, MA 02138. Email: phuybers@fas.harvard.edu

Save
  • Abbot, D., M. Huber, G. Bousquet, and C. Walker, 2009: High-CO2 cloud radiative forcing feedback over both land and ocean in a global climate model. Geophys. Res. Lett., 36 , L05702. doi:10.1029/2008GL036703.

    • Search Google Scholar
    • Export Citation
  • Aires, F., and W. Rossow, 2003: Inferring instantaneous, multivariate and nonlinear sensitivities for the analysis of feedback processes in a dynamical system: Lorenz model case-study. Quart. J. Roy. Meteor. Soc., 129 , 239275. doi:10.1256/qj.01.174.

    • Search Google Scholar
    • Export Citation
  • Annan, J., and J. Hargreaves, 2009: On the generation and interpretation of probabilistic estimates of climate sensitivity. Climatic Change, doi:10.1007/s10584-009-9715-y, in press.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 , L20806. doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19 , 34453482.

  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3 , 261277.

    • Search Google Scholar
    • Export Citation
  • Cess, R., 1975: Global climate change: An investigation of atmospheric feedback mechanisms. Tellus, 27 , 193198.

  • Cess, R., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95 , (D10). 1660116615.

    • Search Google Scholar
    • Export Citation
  • Cess, R., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101 , 1279112794.

    • Search Google Scholar
    • Export Citation
  • Charney, J., and Coauthors, 1979: Carbon dioxide and climate: A scientific assessment. National Academy of Sciences, 22 pp.

  • Chernick, M., 2007: Bootstrap Methods: A Guide for Practitioners and Researchers. Wiley-Interscience, 369 pp.

  • Colman, R., 2003a: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20 , 865873. doi:10.1007/s00382-003-0310-z.

    • Search Google Scholar
    • Export Citation
  • Colman, R., 2003b: Seasonal contributions to climate feedbacks. Climate Dyn., 20 , 825841. doi:10.1007/s00382-002-0301-5.

  • Colman, R., S. Power, and B. McAvaney, 1997: Non-linear climate feedback analysis in an atmospheric general circulation model. Climate Dyn., 13 , 717731. doi:10.1007/s003820050193.

    • Search Google Scholar
    • Export Citation
  • Edwards, T., M. Crucifix, and S. Harrison, 2007: Using the past to constrain the future: How the palaeorecord can improve estimates of global warming. Prog. Phys. Geogr., 31 , 481500. doi:10.1177/0309133307083295.

    • Search Google Scholar
    • Export Citation
  • Frame, D., B. Booth, J. Kettleborough, D. Stainforth, J. Gregory, M. Collins, and M. Allen, 2005: Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Lett., 32 , L09702. doi:10.1029/2004GL022241.

    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I., L. Tremblay, B. Liepert, M. Cane, and R. Cullather, 2008: The influence of cloud and surface properties on the Arctic Ocean shortwave radiation budget in coupled models. J. Climate, 21 , 866882.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33 , L03502. doi:10.1029/2005GL025127.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., G. Russell, A. Lacis, I. Fung, D. Rind, and P. Stone, 1985: Climate response times: Dependence on climate sensitivity and ocean mixing. Science, 229 , 857.

    • Search Google Scholar
    • Export Citation
  • Held, I., and B. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475. doi:10.1146/annurev.energy.25.1.441.

    • Search Google Scholar
    • Export Citation
  • Hodges, J., and J. Dewar, 1992: Is it you or your model talking? A framework for model validation. Rand Corporation Rep. 4114, 43 pp.

  • Kay, J., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114 , D18204. doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J., 2007: Twentieth-century climate model response and climate sensitivity. Geophys Res. Lett., 34 , L22710. doi:10.1029/2007GL031383.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2008: Why are climate models reproducing the observed global surface warming so well? Geophys. Res. Lett., 35 , L18704. doi:10.1029/2008GL034932.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and G. Hegerl, 2008: The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosci., 1 , 735743. doi:10.1038/ngeo337.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., G. Meehl, M. Allen, and D. Stainforth, 2006: Constraining climate sensitivity from the seasonal cycle in surface temperature. J. Climate, 19 , 42244233.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and Coauthors, 2008: A review of uncertainties in global temperature projections over the twenty-first century. J. Climate, 21 , 26512663.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., F. Reinhard, C. Tebaldi, J. Cermak, and G. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • McAvaney, B., and H. Le Treut, 2003: The cloud feedback model intercomparison project: CFMIP. CLIVAR Exchanges, No. 26, International CLIVAR Project Office, Southampton, United Kingdom 1–4.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. Mitchell, R. Stouffer, and K. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Raper, S., J. Gregory, and R. Stouffer, 2002: The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Climate, 15 , 124130.

    • Search Google Scholar
    • Export Citation
  • Rodhe, H., R. Charlson, and T. Anderson, 2000: Avoiding circular logic in climate modeling. Climatic Change, 44 , 419422. doi:10.1023/A:1005536902789.

    • Search Google Scholar
    • Export Citation
  • Roe, G., and M. Baker, 2007: Why is climate sensitivity so unpredictable? Science, 318 , 629632.

  • Sanderson, B., and Coauthors, 2008a: Constraints on model response to greenhouse gas forcing and the role of subgrid-scale processes. J. Climate, 21 , 23842400.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B., C. Piani, W. Ingram, D. Stone, and M. Allen, 2008b: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30 , 175190. doi:10.1007/s00382-007-0280-7.

    • Search Google Scholar
    • Export Citation
  • Schwartz, S., R. Charlson, and H. Rodhe, 2007: Quantifying climate change: Too rosy a picture? Nature Rep. Climate Change, 2 , 2324. doi:10.1038/climate.2007.22.

    • Search Google Scholar
    • Export Citation
  • Soden, B., and I. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19 , 33543360.

  • Soden, B., A. Broccoli, and R. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17 , 36613665.

  • Soden, B., I. Held, R. Colman, K. Shell, J. Kiehl, and C. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21 , 35043520.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433 , 403406. doi:10.1038/nature03301.

    • Search Google Scholar
    • Export Citation
  • Stine, A., P. Huybers, and I. Fung, 2009: Changes in the phase of the annual cycle of surface temperature. Nature, 457 , 435440. doi:10.1038/nature07675.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc., 365A , 20532075. doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A., and K. Emanuel, 2000: The vertical resolution sensitivity of simulated equilibrium temperature and water-vapour profiles. Quart. J. Roy. Meteor. Soc., 126 , 12191238. doi:10.1002/qj.49712656502.

    • Search Google Scholar
    • Export Citation
  • Urban, N., and K. Keller, 2009: Complementary observational constraints on climate sensitivity. Geophys. Res. Lett., 36 , L04708. doi:10.1029/2008GL036457.

    • Search Google Scholar
    • Export Citation
  • Van der Sluijs, J., S. Shackley, and B. Wynne, 1998: Anchoring devices in science for policy: The case of consensus around climate sensitivity. Soc. Stud. Sci., 28 , 291323.

    • Search Google Scholar
    • Export Citation
  • Webb, M., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27 , 1738. doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Weitzman, M., 2009a: Additive damages, fat-tailed climate dynamics, and uncertain discounting. Economics: The Open-Access, Open-Assessment E-Journal,3, 2009-26. [Available online at http://www.economics-ejournal.org/economics/journalarticles/2009-26].

    • Search Google Scholar
    • Export Citation
  • Weitzman, M., 2009b: On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat., 91 , 119. doi:10.1162/rest.91.1.1.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45 , 13971416.

  • Wild, M., 2008: Short-wave and long-wave surface radiation budgets in GCMs: A review based on the IPCC-AR4/CMIP3 models. Tellus, 60A , 932945. doi:10.1111/j.1600-0870.2008.00342.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 945 592 32
PDF Downloads 146 35 4