Abstract
Anthropogenic forcings, such as greenhouse gases and aerosols, are starting to show their influence on the climate, as evidenced by a global warming trend observed in the past century. The weakening of tropical circulation, a consequence of global warming, has also been found in observations and in twenty-first-century climate model simulations. It is a common belief that this weakening of tropical circulation is associated with the fact that global-mean precipitation increases more slowly than water vapor. Here, a new mechanism is proposed for this robust change, which is determined by atmospheric stability associated with the depth of convection. Convection tends to extend higher in a warmer climate because of an uplifting of the tropopause. The higher the convection, the more stable the atmosphere. This leads to a weakening of tropical circulation.
Corresponding author address: Chia Chou, Research Center for Environmental Changes, Academia Sinica, P.O. Box 1-48, Taipei 11529, Taiwan. Email: chiachou@rcec.sinica.edu.tw