Climate Modulation of North Atlantic Hurricane Tracks

James P. Kossin NOAA/National Climatic Data Center, Madison, Wisconsin

Search for other papers by James P. Kossin in
Current site
Google Scholar
PubMed
Close
,
Suzana J. Camargo Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
, and
Matthew Sitkowski Cooperative Institute for Meteorological Satellite Studies, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Matthew Sitkowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The variability of North Atlantic tropical storm and hurricane tracks, and its relationship to climate variability, is explored. Tracks from the North Atlantic hurricane database for the period 1950–2007 are objectively separated into four groups using a cluster technique that has been previously applied to tropical cyclones in other ocean basins. The four clusters form zonal and meridional separations of the tracks. The meridional separation largely captures the separation between tropical and more baroclinic systems, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. General climatologies of the seasonality, intensity, landfall probability, and historical destructiveness of each cluster are documented, and relationships between cluster membership and climate variability across a broad spectrum of time scales are identified.

Composites, with respect to cluster membership, of sea surface temperature and other environmental fields show that regional and remote modes of climate variability modulate the cluster members in substantially differing ways and further demonstrate that factors such as El Niño–Southern Oscillation (ENSO), Atlantic meridional mode (AMM), North Atlantic Oscillation (NAO), and Madden–Julian oscillation (MJO) have varying intrabasin influences on North Atlantic tropical storms and hurricanes. Relationships with African easterly waves are also considered. The AMM and ENSO are found to most strongly modulate the deep tropical systems, while the MJO most strongly modulates Gulf of Mexico storms and the NAO most strongly modulates storms that form to the north and west of their Cape Verde counterparts and closer to the NAO centers of action.

Different clusters also contribute differently to the observed trends in North Atlantic storm frequency and may be related to intrabasin differences in sea surface temperature trends. Frequency trends are dominated by the deep tropical systems, which account for most of the major hurricanes and overall power dissipation. Contrarily, there are no discernable trends in the frequency of Gulf of Mexico storms, which account for the majority of landfalling storms. When the proportion that each cluster contributes to overall frequency is considered, there are clear shifts between the deep tropical systems and the more baroclinic systems. A shift toward proportionally more deep tropical systems began in the early to mid-1980s more than 10 years before the 1995 North Atlantic hurricane season, which is generally used to mark the beginning of the present period of heightened activity.

Corresponding author address: James Kossin, NOAA/NCDC, 1225 W. Dayton St., CIMSS/University of Wisconsin—Madison, Madison, WI 53706. Email: james.kossin@noaa.gov

Abstract

The variability of North Atlantic tropical storm and hurricane tracks, and its relationship to climate variability, is explored. Tracks from the North Atlantic hurricane database for the period 1950–2007 are objectively separated into four groups using a cluster technique that has been previously applied to tropical cyclones in other ocean basins. The four clusters form zonal and meridional separations of the tracks. The meridional separation largely captures the separation between tropical and more baroclinic systems, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. General climatologies of the seasonality, intensity, landfall probability, and historical destructiveness of each cluster are documented, and relationships between cluster membership and climate variability across a broad spectrum of time scales are identified.

Composites, with respect to cluster membership, of sea surface temperature and other environmental fields show that regional and remote modes of climate variability modulate the cluster members in substantially differing ways and further demonstrate that factors such as El Niño–Southern Oscillation (ENSO), Atlantic meridional mode (AMM), North Atlantic Oscillation (NAO), and Madden–Julian oscillation (MJO) have varying intrabasin influences on North Atlantic tropical storms and hurricanes. Relationships with African easterly waves are also considered. The AMM and ENSO are found to most strongly modulate the deep tropical systems, while the MJO most strongly modulates Gulf of Mexico storms and the NAO most strongly modulates storms that form to the north and west of their Cape Verde counterparts and closer to the NAO centers of action.

Different clusters also contribute differently to the observed trends in North Atlantic storm frequency and may be related to intrabasin differences in sea surface temperature trends. Frequency trends are dominated by the deep tropical systems, which account for most of the major hurricanes and overall power dissipation. Contrarily, there are no discernable trends in the frequency of Gulf of Mexico storms, which account for the majority of landfalling storms. When the proportion that each cluster contributes to overall frequency is considered, there are clear shifts between the deep tropical systems and the more baroclinic systems. A shift toward proportionally more deep tropical systems began in the early to mid-1980s more than 10 years before the 1995 North Atlantic hurricane season, which is generally used to mark the beginning of the present period of heightened activity.

Corresponding author address: James Kossin, NOAA/NCDC, 1225 W. Dayton St., CIMSS/University of Wisconsin—Madison, Madison, WI 53706. Email: james.kossin@noaa.gov

Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Ballenzweig, E. M., 1959: Relation of long-period circulation anomalies to tropical storm formation and motion. J. Atmos. Sci., 16 , 121139.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19 , 590612.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327 , 454458. doi:10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., E. N. Rappaport, and C. W. Landsea, 2007: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2006 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS TPC-5, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128 , 353376.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20 , 48194834.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20 , 36353653.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007c: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20 , 36543676.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, A. G. Barnston, and M. Ghil, 2008: Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst., 9 , Q06V05. doi:10.1029/2007GC001861.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66 , 30613074.

    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2009: Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Climate, 22 , 38773893.

    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2010: The influence of the Madden–Julian oscillation on tropical cyclone activity in the Fiji region. J. Climate, 23 , 868886.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S. Y. Wang, and A. J. Clark, 2008: North Atlantic hurricanes contributed by African easterly waves north and south of the African easterly jet. J. Climate, 21 , 67676776.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131 , 27302747.

  • Delcroix, T., J. Picaut, and G. Eldin, 1991: Equatorial Kelvin and Rossby waves evidenced in the Pacific Ocean through sea level and surface current anomalies. J. Geophys. Res., 96 , (Suppl.). 32493262.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Conell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16 , 219233.

    • Search Google Scholar
    • Export Citation
  • du Penhoat, Y., T. Delcroix, and J. Picaut, 1992: Interpretation of Kelvin/Rossby waves in the equatorial Pacific from model–Geosat data intercomparison during the 1986–1987 El Niño. Oceanol. Acta, 15 , 545554.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84 , 353356.

  • Elsner, J. B., and C. P. Schmertmann, 1993: Improving extended-range seasonal predictions of intense Atlantic hurricane activity. Wea. Forecasting, 8 , 345351.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and A. B. Kara, 1999: Hurricanes of the North Atlantic: Climate and Society. Oxford University Press, 488 pp.

  • Elsner, J. B., and K. B. Liu, 2003: Examining the ENSO–typhoon hypothesis. Climate Res., 25 , 4354.

  • Elsner, J. B., G. S. Lehmiller, and T. B. Kimberlain, 1996: Objective classification of Atlantic hurricanes. J. Climate, 9 , 28802889.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: Air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128 , 11391152.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA–CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2 .doi:10.3894/JAMES.2010.2.1.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28 , 20772080.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320 , 602607.

  • Gaffney, S. J., A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29 , 423440.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9 , 11691187.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293 , 474479.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96 , 669700.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112 , 16491668.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123 , 12251246.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1990: Decadal-scale changes of the circulation in the tropical Atlantic sector associated with Sahel drought. Int. J. Climatol., 10 , 459472.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Heller, 1977: Dynamics of climate hazards in Northeast Brazil. Quart. J. Roy. Meteor. Soc., 103 , 7792.

  • Hess, J., J. Elsner, and N. LaSeur, 1995: Improving seasonal hurricane predictions for the Atlantic basin. Wea. Forecasting, 10 , 425432.

    • Search Google Scholar
    • Export Citation
  • Hodanish, S., and W. M. Gray, 1993: An observational analysis of tropical cyclone recurvature. Mon. Wea. Rev., 121 , 26652689.

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Hopsch, S. B., C. D. Thorncroft, K. Hodges, and A. Aiyyer, 2007: West African storm tracks and their relationship to Atlantic tropical cyclones. J. Climate, 20 , 24682483.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, 21 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jónsson, and D. Wheeler, 1997: Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17 , 14331450.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kimberlain, T. B., and J. B. Elsner, 1998: The 1995 and 1996 North Atlantic hurricane seasons: A return of the tropical only hurricane. J. Climate, 11 , 20622069.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian oscillation–Atlantic hurricane relationship. J. Climate, 23 , 282293.

  • Knaff, J. A., 1997: Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate, 10 , 789804.

  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1 , 359364.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88 , 17671781.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and S. J. Camargo, 2009: Hurricane track variability and secular potential intensity trends. Climatic Change, 97 , 329337. doi:10.1007/s10584-009-9748-2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO180001.

  • Landsea, C. W., G. A. Vecchi, L. Bengtsson, and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15 , 11181140.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287 , 20022004.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of nondeveloping versus developing systems. J. Atmos. Sci., 38 , 11321151.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., G. D. Deane, L. F. Bosart, C. A. Davis, and T. J. Galarneau, 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136 , 12841304.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Wea. Rev., 128 , 40974107.

    • Search Google Scholar
    • Export Citation
  • Nakamura, J., U. Lall, Y. Kushnir, and S. J. Camargo, 2009: Classifying North Atlantic tropical cyclone tracks by mass moments. J. Climate, 22 , 54815494.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative-convective equilibrium. Quart. J. Roy. Meteor. Soc., 133 , 20852107.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of ENSO. Science, 277 , 663666.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1987: Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm formation. Mon. Wea. Rev., 115 , 25982614.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21 , 22832296.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14 , 11661179.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21 , 35803600.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., P. F. Skerjl, and L. A. Twisdale, 2000: Simulation of hurricane risk in the U.S. using empirical track model. J. Struct. Eng., 126 , 12221237.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34 , L07709. doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2009: Impact of the Madden–Julian oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys. Res. Lett., 36 , L15802. doi:10.1029/2009GL039089.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4 , 5384.

  • Walker, G. T., and E. W. Bliss, 1937: World weather VI. Mem. Roy. Meteor. Soc., 4 , 119139.

  • Webster, P. J., G. J. Holland, J. A. Curry, and H-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 , 18441846.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., A. H. Sobel, and S. J. Camargo, 2007: Relationship between the potential and actual intensities of tropical cyclones on interannual time scales. Geophys. Res. Lett., 34 , L08810. doi:10.1029/2006GL028581.

    • Search Google Scholar
    • Export Citation
  • Xie, L., T. Yan, and L. J. Pietrafesa, 2005a: The effect of Atlantic sea surface temperature dipole mode on hurricanes: Implications for the 2004 Atlantic hurricane season. Geophys. Res. Lett., 32 , L03701. doi:10.1029/2004GL021702.

    • Search Google Scholar
    • Export Citation
  • Xie, L., T. Yan, L. J. Pietrafesa, J. M. Morrison, and T. Karl, 2005b: Climatology and interannual variability of North Atlantic hurricane tracks. J. Climate, 18 , 53705381.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3776 1189 93
PDF Downloads 2773 430 32