• AchutaRao, K., , and K. Sperber, 2002: Simulation of the El Niño–Southern Oscillation: Results from the Coupled Model Intercomparison Project (CMIP). Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • AchutaRao, K., , and K. Sperber, 2006: ENSO simulation in coupled ocean–atmosphere models: Are the current models better? Climate Dyn., 27 , 115.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • An, S-I., 2004: Interdecadal changes in the El Niño–La Niña asymmetry. Geophys. Res. Lett., 31 , L23210. doi:10.1029/2004GL021699.

  • An, S-I., , and F-F. Jin, 2000: An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys. Res. Lett., 27 , 25732576.

    • Search Google Scholar
    • Export Citation
  • An, S-I., , and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13 , 20442055.

    • Search Google Scholar
    • Export Citation
  • An, S-I., , and F-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14 , 34213432.

    • Search Google Scholar
    • Export Citation
  • An, S-I., , and F-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17 , 23992412.

  • An, S-I., , F-F. Jin, , and I-S. Kang, 1999: The role of zonal advection feedback in phase transition and growth of ENSO in the Cane–Zebiak model. J. Meteor. Soc. Japan, 77 , 11511160.

    • Search Google Scholar
    • Export Citation
  • An, S-I., , Y-G. Ham, , J-S. Kug, , F-F. Jin, , and I-S. Kang, 2005: El Niño–La Niña asymmetry in the Coupled Model Intercomparison Project simulations. J. Climate, 18 , 26172627.

    • Search Google Scholar
    • Export Citation
  • An, S-I., , J-S. Kug, , Y-G. Ham, , and I-S. Kang, 2008: Successive modulation of ENSO to the future greenhouse warming. J. Climate, 21 , 321.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., , and A. C. Hirst, 1989: Interannual variability in the tropical atmosphere/ocean system: Influence of the basic state and ocean geometry. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., , and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at http://ams.confex.com/ams/pdfpapers/70720.pdf].

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., , and G. J. van Oldenborgh, 2003: On the impact of local feedbacks in the central Pacific on the ENSO cycle. J. Climate, 16 , 23962407.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., , M. A. Balmaseda, , F. C. Vossepoel, , G. J. van Oldenborgh, , and P. J. van Leeuwen, 2002: Balanced ocean-data assimilation near the equator. J. Phys. Oceanogr., 32 , 25092529.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., , A. Wittenberg, , and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15 , 274298.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136 , 29993017.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , G. A. Chepurin, , X. Cao, , and B. S. Giese, 2000: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., , and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19 , 13331347.

  • Dewitte, B., 2000: Sensitivity of an intermediate coupled ocean–atmosphere model of the tropical Pacific to its oceanic vertical structure. J. Climate, 13 , 23632388.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , and C. Périgaud, 1996: El Niño–La Niña events simulated with Cane and Zebiak’s model and observed with satellite or in situ data. Part II: Model forced with observations. J. Climate, 9 , 11881207.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , and G. Reverdin, 2000: Vertically propagating annual and interannual variability in an OGCM simulation of the tropical Pacific in 1985–94. J. Phys. Oceanogr., 30 , 15621581.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , G. Reverdin, , and C. Maes, 1999: Vertical structure of an OGCM forced simulation of the tropical Pacific in 1985–94. J. Phys. Oceanogr., 29 , 15421570.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , D. Gushchina, , Y. duPenhoat, , and S. Lakeev, 2002: On the importance of subsurface variability for ENSO simulation and prediction with intermediate coupled models of the tropical Pacific: A case study for the 1997–1998 El Niño. Geophys. Res. Lett., 29 , 1666. doi:10.1029/2001GL014452.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , C. Cibot, , C. Périgaud, , S-I. An, , and L. Terray, 2007a: Interaction between near-annual and ENSO modes in a CGCM simulation: Role of the equatorial background mean state. J. Climate, 20 , 10351052.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , S-W. Yeh, , B-K. Moon, , C. Cibot, , and L. Terray, 2007b: Rectification of the ENSO variability by interdecadal changes in the equatorial background mean state in a CGCM simulation. J. Climate, 20 , 20022021.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , and S. G. Philander, 2000: Is El Niño changing? Science, 288 , 19972002. doi:10.1126/science.288.5473.1997.

  • Fedorov, A. V., , and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14 , 30863101.

    • Search Google Scholar
    • Export Citation
  • Fjeldstad, J. E., 1933: Interne wellen. Geofys. Publ., 10 , 335.

  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Guilyardi, E., and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17 , 46234629.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., , A. Wittenberg, , A. Fedorov, , M. Collins, , C. Wang, , A. Capotondi, , G. J. van Oldenborgh, , and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90 , 325340.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci., 43 , 606630.

  • Hoerling, M. P., , A. Kumar, , and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1996: Tropical ocean–atmosphere interaction, the Pacific cold tongue, and the El Niño–Southern Oscillation. Science, 274 , 7678.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54 , 830847.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., , and J. D. Neelin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part I: Numerical results. J. Atmos. Sci., 50 , 34773503.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., , and S-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26 , 29892992.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., , J-S. Kug, , S-I. An, , and I-S. Kang, 2003: A near-annual coupled ocean–atmosphere mode in the equatorial Pacific Ocean. Geophys. Res. Lett., 30 , 1080. doi:10.1029/2002GL015983.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S., , and J-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107 , 4372. doi:10.1029/2001JD000393.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S., , S-I. An, , and F-F. Jin, 2001: A symmetric approximation of the SST anomaly equation for ENSO. J. Meteor. Soc. Japan, 79 , 110.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S., , J-S. Kug, , S-I. An, , and F-F. Jin, 2004: A near-annual Pacific Ocean basin mode. J. Climate, 17 , 24782488.

  • Kessler, W., , and R. Kleeman, 1999: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13 , 35603575.

  • Lighthill, M. J., 1969: Dynamical response of the Indian Ocean to the onset of the southwest monsoon. Philos. Trans. Roy. Soc. London., A265 , 4592.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20 , 44974525.

  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Indian and Pacific Ocean regions. Mon. Wea. Rev., 115 , 2750.

    • Search Google Scholar
    • Export Citation
  • Moon, B-K., , S-W. Yeh, , B. Dewitte, , J-G. Jhun, , I-S. Kang, , and B. P. Kirtman, 2004: Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophys. Res. Lett., 31 , L03203. doi:10.1029/2003GL018829.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F-F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., , and S. M. Griffies, 2000: MOM 3.0 manual. GFDL Tech. Note, 682 pp. [Available online at http://www.gfdl.noaa.gov/cms-filesystem-action/model_development/ocean/mom3_manual.pdf].

    • Search Google Scholar
    • Export Citation
  • Perez, C. L., , A. M. Moore, , J. Zavala-Garay, , and R. Kleeman, 2005: A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J. Climate, 18 , 50665085.

    • Search Google Scholar
    • Export Citation
  • Philip, S. Y., , and G. J. van Oldenborgh, 2006: Shifts in ENSO coupling processes under global warming. Geophys. Res. Lett., 33 , L11704. doi:10.1029/2006GL026196.

    • Search Google Scholar
    • Export Citation
  • Philip, S. Y., , and G. J. van Oldenborgh, 2009: Significant atmospheric nonlinearities in the ENSO cycle. J. Climate, 22 , 40144028.

  • Philip, S. Y., , and G. J. van Oldenborgh, 2010: Atmospheric properties of ENSO: Models versus observations. Climate Dyn., 34 , 10731091. doi:10.1007/s00382-009-0579-7.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., , F. Masia, , and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277 , 663666.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , M. S. Halpert, , and X. Wang, 1992: Observed tropospheric biennial variability and its relationship to the Southern Oscillation. J. Climate, 5 , 594614.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., , and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45 , 549566.

  • Smith, R. D., , J. K. Dukowicz, , and R. C. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60 , 3861.

  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21 , 22832296.

    • Search Google Scholar
    • Export Citation
  • Steel, R. G. D., , and J. H. Torrie, 1960: Principles and Procedures of Statistics. MacGraw-Hill, 481 pp.

  • Suarez, M. J., , and P. S. Schopf, 1988: A delayed oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Timmermann, A., , and F-F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29 , 1003. doi:10.1029/2001GL013369.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., , and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Tourre, Y. M., , Y. Kushnir, , and W. B. White, 1999: Evolution of interdecadal variability in sea level pressure, sea surface temperature, and upper ocean temperature over the Pacific Ocean. J. Phys. Oceanogr., 29 , 15281541.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14 , 16971701.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • van Oldenborgh, G. J., , S. Y. Philip, , and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1 , 8195.

  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Wang, B., , and S-I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28 , 37093712.

  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36 , L12702. doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., , F. Sun, , and H-Y. Kao, 2009: Contributions of Indian Ocean and monsoon biases to the excessive biennial ENSO in CCSM3. J. Climate, 22 , 18501858.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zhang, R-H., , L. M. Rothstein, , and A. J. Busalacchi, 1999: Interannual and decadal variability of the subsurface thermal structure in the Pacific Ocean. Climate Dyn., 15 , 703717.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 3
PDF Downloads 12 12 3

ENSO Feedbacks and Associated Time Scales of Variability in a Multimodel Ensemble

View More View Less
  • 1 Université de Toulouse, UPS (OMP-PCA), LEGOS, and IRD, LEGOS, Toulouse, France
  • | 2 Department of Atmospheric Sciences/Global Environment Laboratory, Yonseï University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

The background state of the equatorial Pacific determines the prevalence of a “slow” recharge oscillator-type ENSO over a “fast” quasi-biennial surface-driven ENSO. The first is controlled to a large extent by the thermocline feedback, whereas the latter is related to enhanced zonal advective feedback. In this study, dynamical diagnostics are used to investigate the relative importance of these two feedbacks in the Coupled Model Intercomparison Project and its relation with the differences in ENSO-like variability among the models. The focus is on the role of the mean oceanic surface circulation in controlling the relative weight of the two feedbacks.

By the means of an intermediate-type ocean model of the tropical Pacific “tuned” from the coupled general circulation model (CGCM) outputs, the contribution of the advection terms (vertical versus zonal) to the rate of SST change is estimated. A new finding is that biases in the advection terms are to a large extent related to the biases in the mean surface circulation. The latter are used to infer the dominant ENSO feedback for each CGCM. This allows for the classification of the CGCMs into three groups that account for the dominant feedback process of the ENSO cycle: horizontal advection (mainly in the western Pacific), vertical advection (mainly in the eastern Pacific), and the combination of both mechanisms.

Based on such classification, the analysis also reveals that the models exhibit distinctive behavior with respect to the characteristics of ENSO: for most models, an enhanced (diminished) contribution of the zonal advective feedback is associated with faster (slower) ENSO and a tendency toward a cooler (warmer) mean state in the western-to-central Pacific Ocean. The results support the interpretation that biases in the mean state are sustained/maintained by the privileged mode of variability associated with the dominant feedback mechanism in the models. In particular, the models having a dominant zonal advective feedback exhibit significant cold SST asymmetry (or negative skewness) in the western equatorial Pacific.

Corresponding author address: Ali Belmadani, Université de Toulouse, UPS (OMP-PCA), LEGOS, 14 Av. Edouard Belin, F-31400 Toulouse, France. Email: ali.belmadani@ird.fr

Abstract

The background state of the equatorial Pacific determines the prevalence of a “slow” recharge oscillator-type ENSO over a “fast” quasi-biennial surface-driven ENSO. The first is controlled to a large extent by the thermocline feedback, whereas the latter is related to enhanced zonal advective feedback. In this study, dynamical diagnostics are used to investigate the relative importance of these two feedbacks in the Coupled Model Intercomparison Project and its relation with the differences in ENSO-like variability among the models. The focus is on the role of the mean oceanic surface circulation in controlling the relative weight of the two feedbacks.

By the means of an intermediate-type ocean model of the tropical Pacific “tuned” from the coupled general circulation model (CGCM) outputs, the contribution of the advection terms (vertical versus zonal) to the rate of SST change is estimated. A new finding is that biases in the advection terms are to a large extent related to the biases in the mean surface circulation. The latter are used to infer the dominant ENSO feedback for each CGCM. This allows for the classification of the CGCMs into three groups that account for the dominant feedback process of the ENSO cycle: horizontal advection (mainly in the western Pacific), vertical advection (mainly in the eastern Pacific), and the combination of both mechanisms.

Based on such classification, the analysis also reveals that the models exhibit distinctive behavior with respect to the characteristics of ENSO: for most models, an enhanced (diminished) contribution of the zonal advective feedback is associated with faster (slower) ENSO and a tendency toward a cooler (warmer) mean state in the western-to-central Pacific Ocean. The results support the interpretation that biases in the mean state are sustained/maintained by the privileged mode of variability associated with the dominant feedback mechanism in the models. In particular, the models having a dominant zonal advective feedback exhibit significant cold SST asymmetry (or negative skewness) in the western equatorial Pacific.

Corresponding author address: Ali Belmadani, Université de Toulouse, UPS (OMP-PCA), LEGOS, 14 Av. Edouard Belin, F-31400 Toulouse, France. Email: ali.belmadani@ird.fr

Save