• Bauer, M., , and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence of climatological humidity. J. Climate, 19 , 16521672.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1919: On the structure of moving cyclones. Mon. Wea. Rev., 47 , 9599.

  • Bjerknes, J., , and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3 , 318.

    • Search Google Scholar
    • Export Citation
  • Condron, A., , G. R. Bigg, , and I. A. Renfrew, 2006: Polar mesoscale cyclones in the northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery. Mon. Wea. Rev., 134 , 15181533.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , M-S. Yao, , W. Kovari, , and K. K-W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9 , 270304.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , M-S. Yao, , and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34 , L16703. doi:10.1029/2007GL030525.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20 , 233254.

  • Field, P. R., , A. Gettelman, , R. B. Neale, , R. Wood, , P. J. Rasch, , and H. Morrison, 2008: Midlatitude cyclone compositing to constrain climate model behavior using satellite observations. J. Climate, 21 , 58875903.

    • Search Google Scholar
    • Export Citation
  • Haladay, T., , and G. Stephens, 2009: Characteristics of tropical thin cirrus clouds deduced from joint CloudSat-CALIPSO observations. J. Geophys. Res., 114 , D00A25. doi:10.1029/2008JD010675.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., , T. S. L’Ecuyer, , G. L. Stephens, , S. D. Miller, , C. Mitrescu, , N. B. Wood, , and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114 , D00A22. doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5 , 3765.

  • Hobbs, P. V., , T. J. Mtejka, , P. H. Herzegh, , J. D. Locatelli, , and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part I: A case study of a cold front. J. Atmos. Sci., 37 , 568596.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59 , 10411061.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18 , 41084129.

  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, 570 pp.

  • Im, E., , C. Wu, , and S. L. Durden, 2005: Cloud profiling radar for the CloudSat mission. IEEE Aerosp. Electron. Syst. Mag., 20 , 2025.

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S-K. Yang, , J. J. Hinilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127 , 25142531.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., , and M. W. Crane, 1997: Comparing satellite and surface observations of cloud patterns in synoptic-scale circulations systems. Mon. Wea. Rev., 125 , 31723189.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., , and P. A. Clark, 2003: The effects of changing resolution on mesoscale modeling of line convection and slantwise circulations in FASTEX IOP16. Quart. J. Roy. Meteor. Soc., 129 , 22552278.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Oceanic Technol., 26 , 11981213.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , R. Marchand, , Q. Zhang, , and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: initial observations from summer 2006. Geophys. Res. Lett., 34 , L09808. doi:10.1029/2006GL029017.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , Q. Zhang, , M. Vaughan, , R. Marchand, , G. L. Stephens, , C. Trepte, , and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114 , D00A26. doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., , G. G. Mace, , T. Ackerman, , and G. L. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25 , 519533.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., , A. Del Genio, , and M. Bauer, 2006: Observational constraints on the cloud thermodynamic phase in midlatitude storms. J. Climate, 19 , 52735288.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , M. A. Shapiro, , and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121 , 21772199.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1993: Parameterization of slantwise convection in numerical weather prediction models. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 195–202.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2008: The rationale for why climate models should adequately resolve the mesoscale. High Resolution Numerical Modeling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., 29–44.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., , G. L. Stephens, , and M. Miller, 2008: CLOUDSAT: Adding a new dimension to a classical view of extratropical cyclones. Bull. Amer. Meteor. Soc., 89 , 599609.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., 1996: On the global variation of precipitating layer clouds. Bull. Amer. Meteor. Soc., 77 , 5370.

  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS Model E: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19 , 153192.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., , and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127 , 27092732.

  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , and K. Keay, 2000: Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. J. Climate, 13 , 873885.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122 , 22392256.

  • Sinclair, M., 1997: Objective identification of cyclones and their circulation intensity and climatology. Wea. Forecasting, 12 , 591608.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-TRAIN: A new dimension to space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., , K. K. Szeto, , R. F. Reinking, , S. A. Clough, , and S. P. Ballard, 1998: Midlatitude cyclonic cloud systems and their features affecting large scales and climate. Rev. Geophys., 36 , 245273.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., , and I. Fung, 1994: Modeling of mineral dust in the atmosphere: Sources, transport and optical thickness. J. Geophys. Res., 99D , 2289722914.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. T. Fasullo, 2010: Simulation of present day and twenty-first century energy budgets of the Southern Oceans. J. Climate, 23 , 440454.

    • Search Google Scholar
    • Export Citation
  • Van der Werf, G. R., , J. T. Randerson, , L. Giglio, , G. J. Collatz, , P. S. Kasibhatla, , and A. F. Arellano Jr., 2006: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 6 , 34233441.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26 , 20342050.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

  • Webb, M., , C. Senior, , S. Bony, , and J-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17 , 905922.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , W. H. Hunt, , and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34 , L19803. doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , M. A. Vaughan, , A. H. Omar, , Y. Hu, , K. A. Powell, , Z. Liu, , W. H. Hunt, , and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26 , 23102323.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., , J. Patoux, , and C. Li, 2009: Satellite-based midlatitude cyclone statistics over the Southern Ocean: 2. Tracks and surface fluxes. J. Geophys. Res., 114 , D04106. doi:10.1029/2008JD010874.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110 , D15S02. doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 76 6
PDF Downloads 75 75 4

Cloud Vertical Distribution across Warm and Cold Fronts in CloudSat–CALIPSO Data and a General Circulation Model

View More View Less
  • 1 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 2 NASA Goddard Institute for Space Studies, New York, New York
  • | 3 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 4 Center for Climate Systems Research, Columbia University, New York, New York
© Get Permissions
Restricted access

Abstract

Cloud vertical distributions across extratropical warm and cold fronts are obtained using two consecutive winters of CloudSat–Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations and National Centers for Environmental Prediction reanalysis atmospheric state parameters over the Northern and Southern Hemisphere oceans (30°–70°N/S) between November 2006 and September 2008. These distributions generally resemble those from the original model introduced by the Bergen School in the 1920s, with the following exceptions: 1) substantial low cloudiness, which is present behind and ahead of the warm and cold fronts; 2) ubiquitous high cloudiness, some of it very thin, throughout the warm-frontal region; and 3) upright convective cloudiness near and behind some warm fronts. One winter of GISS general circulation model simulations of Northern and Southern Hemisphere warm and cold fronts at 2° × 2.5° × 32 levels resolution gives similar cloud distributions but with much lower cloud fraction, a shallower depth of cloudiness, and a shorter extent of tilted warm-frontal cloud cover on the cold air side of the surface frontal position. A close examination of the relationship between the cloudiness and relative humidity fields indicates that water vapor is not lifted enough in modeled midlatitude cyclones and this is related to weak vertical velocities in the model. The model also produces too little cloudiness for a given value of vertical velocity or relative humidity. For global climate models run at scales coarser than tens of kilometers, the authors suggest that the current underestimate of modeled cloud cover in the storm track regions, and in particular the 50°–60°S band of the Southern Oceans, could be reduced with the implementation of a slantwise convection parameterization.

Corresponding author address: Catherine Naud, 2880 Broadway, New York, NY 10025. Email: cnaud@giss.nasa.gov

Abstract

Cloud vertical distributions across extratropical warm and cold fronts are obtained using two consecutive winters of CloudSat–Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations and National Centers for Environmental Prediction reanalysis atmospheric state parameters over the Northern and Southern Hemisphere oceans (30°–70°N/S) between November 2006 and September 2008. These distributions generally resemble those from the original model introduced by the Bergen School in the 1920s, with the following exceptions: 1) substantial low cloudiness, which is present behind and ahead of the warm and cold fronts; 2) ubiquitous high cloudiness, some of it very thin, throughout the warm-frontal region; and 3) upright convective cloudiness near and behind some warm fronts. One winter of GISS general circulation model simulations of Northern and Southern Hemisphere warm and cold fronts at 2° × 2.5° × 32 levels resolution gives similar cloud distributions but with much lower cloud fraction, a shallower depth of cloudiness, and a shorter extent of tilted warm-frontal cloud cover on the cold air side of the surface frontal position. A close examination of the relationship between the cloudiness and relative humidity fields indicates that water vapor is not lifted enough in modeled midlatitude cyclones and this is related to weak vertical velocities in the model. The model also produces too little cloudiness for a given value of vertical velocity or relative humidity. For global climate models run at scales coarser than tens of kilometers, the authors suggest that the current underestimate of modeled cloud cover in the storm track regions, and in particular the 50°–60°S band of the Southern Oceans, could be reduced with the implementation of a slantwise convection parameterization.

Corresponding author address: Catherine Naud, 2880 Broadway, New York, NY 10025. Email: cnaud@giss.nasa.gov

Save