• Ancey, C., 2005: Monte Carlo calibration of avalanches described as Coulomb fluid flows. Philos. Trans. Roy. Soc. London, 363A , 15291550.

    • Search Google Scholar
    • Export Citation
  • Ancey, C., , F. Rapin, , E. Martin, , C. Coleou, , M. Naaim, , and G. Brugnot, 2000: L’avalanche de Péclerey du 9 février 1999. Houille Blanche, 5 , 4553.

    • Search Google Scholar
    • Export Citation
  • Ancey, C., , M. Meunier, , and D. Richard, 2003: Inverse problem in avalanche dynamics models. Water Resour. Res., 39 , 1099. doi:10.1029/2002WR001749.

    • Search Google Scholar
    • Export Citation
  • Banerjee, S., , B. Carlin, , and A. E. Gelfand, 2003: Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall, 472 pp.

  • Beniston, M., 1997: Variations of snow depth and duration in the Swiss Alps over the last 50 years: Links to changes in large-scale climatic forcings. Climatic Change, 36 , 281300.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2005: Warm winter spells in the Swiss Alps: Strong heat waves in a cold season? A study focusing on climate observations at the Saentis high mountain site. Geophys. Res. Lett., 32 , L01812. doi:10.1029/2004GL021478.

    • Search Google Scholar
    • Export Citation
  • Berger, J. O., 1985: Statistical Decision Theory and Bayesian Analysis. 2nd ed. Springer-Verlag, 617 pp.

  • Bernardo, J. M., , and A. F. M. Smith, 1994: Bayesian Theory. Wiley, 586 pp.

  • Birkeland, K. W., , and C. J. Mock, 2001: The major snow avalanche cycle of February 1986 in the western United States. Nat. Hazards, 24 , 7595.

    • Search Google Scholar
    • Export Citation
  • Birkeland, K. W., , C. J. Mock, , and J. J. Shinker, 2001: Avalanche extremes and atmospheric circulation patterns. Ann. Glaciol., 32 , 135140.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, P., 1992: Trends in global temperature. Climatic Change, 21 , 116.

  • Booth, N. B., , and A. F. M. Smith, 1982: A Bayesian approach to retrospective identification of change-points. J. Econometrics, 19 , 722.

    • Search Google Scholar
    • Export Citation
  • Brooks, S. P., 1998: Markov chain Monte Carlo method and its application. Statistician, 47 , 69100.

  • Brooks, S. P., , and A. Gelman, 1998: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat., 7 , 434455.

    • Search Google Scholar
    • Export Citation
  • Burnet, R., 2006: Cartes et bases de données d’avalanche. Dynamique des Avalanches, C. Ancey, Ed., Presses Polytechniques et Universitaires Romandes, 167–169.

    • Search Google Scholar
    • Export Citation
  • Carlin, B. P., , A. E. Gelfand, , and A. F. M. Smith, 1992: Hierarchical Bayesian analysis of changepoint problems. Appl. Stat., 41 , 389405.

    • Search Google Scholar
    • Export Citation
  • Carlin, J. B., , and S. Chib, 1995: Bayesian model choice via Markov chain Monte Carlo methods. J. Roy. Stat. Soc., 57B , 473484.

  • Casassa, G., , H. Narita, , and N. Maeno, 1989: Measurements of friction coefficients of snow blocks. Ann. Glaciol., 13 , 4044.

  • Casteller, A., , V. Stöckli, , R. Villalba, , and A. C. Mayer, 2007: An evaluation of dendroecological indicators of snow avalanches in the Swiss Alps. Arct. Antarct. Alp. Res., 39 , 218228.

    • Search Google Scholar
    • Export Citation
  • Cemagref, 2008: Calcul des fréquences avalancheuses communales moyennes. Rapport Technique à la DPPR, 13 pp. [Available online at http://www.avalanches.fr/].

    • Search Google Scholar
    • Export Citation
  • Clark, J. S., , and A. Gelfand, 2006: Computational Statistics: Hierarchical Bayes and MCMC Methods in the Environmental. Oxford University Press, 205 pp.

    • Search Google Scholar
    • Export Citation
  • Dade, W., , and H. Huppert, 1998: Long-runout rockfalls. Geology, 26 , 803806.

  • Dahe, Q., , L. Shiyin, , and L. Peiji, 2006: Snow cover distribution, variability, and response to climate change in western China. J. Climate, 19 , 18201833.

    • Search Google Scholar
    • Export Citation
  • Diaz, J., 1982: Bayesian detection of a change of scale parameter in sequences of independent gamma random variables. J. Econometrics, 19 , 2329.

    • Search Google Scholar
    • Export Citation
  • Dubé, S., , L. Filion, , and B. Hétu, 2004: Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Québec, Canada. Arct. Antarct. Alp. Res., 36 , 555564.

    • Search Google Scholar
    • Export Citation
  • Dullinger, S., , T. Dirnböck, , and G. Grabherr, 2004: Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invisibility. J. Ecol., 92 , 241252.

    • Search Google Scholar
    • Export Citation
  • Durand, Y., , M. Laternser, , G. Giraud, , P. Etchevers, , L. Lesaffre, , and L. Mérindol, 2009: Reanalysis of 44 years of climate in the French Alps (1958–2002): Methodology, model validation, climatology, and trends for air temperature and precipitation. J. Appl. Meteor. Climatol., 48 , 429449.

    • Search Google Scholar
    • Export Citation
  • Eckert, N., , E. Parent, , L. Belanger, , and S. Garcia, 2007a: Hierarchical modelling for spatial analysis of the number of avalanche occurrences at the scale of the township. Cold Reg. Sci. Technol., 50 , 97112.

    • Search Google Scholar
    • Export Citation
  • Eckert, N., , E. Parent, , and D. Richard, 2007b: Revisiting statistical–topographical methods for avalanche predetermination: Bayesian modelling for runout distance predictive distribution. Cold Reg. Sci. Technol., 49 , 88107.

    • Search Google Scholar
    • Export Citation
  • Eckert, N., , E. Parent, , M. Naaim, , and D. Richard, 2008: Bayesian stochastic modelling for avalanche predetermination: From a general system framework to return period computations. Stoch. Environ. Res. Risk, 22A , 185206.

    • Search Google Scholar
    • Export Citation
  • Eckert, N., , E. Parent, , T. Faug, , and M. Naaim, 2009: Bayesian optimal design of an avalanche dam using a multivariate numerical avalanche model. Stoch. Environ. Res. Risk, 23A , 11231141.

    • Search Google Scholar
    • Export Citation
  • Eckert, N., , E. Parent, , R. Kies, , and H. Baya, 2010: A spatio-temporal modelling framework for assessing the fluctuations of avalanche occurrence resulting from climate change: Application to 60 years of data in the northern French Alps. Climatic Change, doi:10.1007/s10584-009-9718-8, in press.

    • Search Google Scholar
    • Export Citation
  • Fortin, V., , L. Perreault, , and J. D. Salas, 2004: Retrospective analysis and forecasting of streamflows using a shifting level model. J. Hydrol., 296 , 135163.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, J., , M. Beniston, , A. Fischlin, , C. Frei, , S. Goyette, , K. Jasper, , and C. Pfister, 2006: Climate risks and their impact on agriculture and forests in Switzerland. Climatic Change, 79 , 79106.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , and G. M. Flato, 1999: Enhanced climate change and its detection over the Rocky Mountains. J. Climate, 12 , 230243.

  • Gassner, M., , and B. Brabec, 2002: Nearest neighbour models for local and regional avalanche forecasting. Nat. Hazards Earth Syst. Sci., 2 , 247253.

    • Search Google Scholar
    • Export Citation
  • Germain, D., , L. Filion, , and B. Hétu, 2009: Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change, 92 , 141167.

    • Search Google Scholar
    • Export Citation
  • Gilks, W. R., , S. Richardson, , and D. J. Spiegelhalter, 2001: Markov Chain Monte Carlo in Practice. Chapman and Hall, 486 pp.

  • Hägeli, P., , and D. McClung, 2003: Avalanche characteristics of a transitional snow climate—Columbia Mountains, British Columbia, Canada. Cold Reg. Sci. Technol., 37 , 255276.

    • Search Google Scholar
    • Export Citation
  • Hägeli, P., , and D. McClung, 2007: Expanding the snow-climate classification with avalanche-relevant information: Initial description of avalanche winter regimes for southwestern Canada. J. Glaciol., 53 , 266276.

    • Search Google Scholar
    • Export Citation
  • Hebertson, E. G., , and M. J. Jenkins, 2003: Historic climate factors associated with major avalanche years on the Wasatch Plateau, Utah. Cold Reg. Sci. Technol., 37 , 315332.

    • Search Google Scholar
    • Export Citation
  • Höller, P., 2009: Avalanche cycles in Austria: An analysis of the major events in the last 50 years. Nat. Hazards, 48 , 399424.

  • Huntington, T. G., , G. A. Hodgkins, , B. D. Keim, , and R. W. Dudley, 2004: Changes in the Proportion of Precipitation Occurring as Snow in New England (1949–2000). J. Climate, 17 , 26262636.

    • Search Google Scholar
    • Export Citation
  • Jaedicke, C., , and S. Bakkehoi, 2007: Climate database for avalanche consulting and warning in Norway. Cold Reg. Sci. Technol., 47 , 171179.

    • Search Google Scholar
    • Export Citation
  • Jamard, A. L., , S. Garcia, , and L. Bélanger, 2002: L’enquête permanente sur les Avalanches (EPA): Statistique descriptive générale des événements et des sites. DESS Ingéniérie Mathématique Option Statistique, Université Joseph Fourrier, Grenoble, France, 101 pp. [Available online at http://www.avalanches.fr/].

    • Search Google Scholar
    • Export Citation
  • Jomelli, V., , and P. Pech, 2004: Effects of the Little Ice Age on avalanche boulder tongues in the French Alps (Massif des Ecrins). Earth Surf. Processes Landforms, 29 , 553564.

    • Search Google Scholar
    • Export Citation
  • Jomelli, V., , C. Delval, , D. Grancher, , S. Escande, , D. Brunstein, , B. Hetu, , L. Filion, , and P. Pech, 2007: Probabilistic analysis of recent snow avalanche activity and climate in the French Alps. Cold Reg. Sci. Technol., 47 , 180192.

    • Search Google Scholar
    • Export Citation
  • Kass, R. E., , and A. E. Raftery, 1995: Bayes factors. J. Amer. Stat. Assoc., 90 , 773795.

  • Keller, F., , S. Goyette, , and M. Beniston, 2005: Sensitivity analysis of snow cover to climate change scenarios and their impact on plant habitats in alpine terrain. Climatic Change, 72 , 299319.

    • Search Google Scholar
    • Export Citation
  • Keylock, C. J., 2003: The North Atlantic Oscillation and snow avalanching in Iceland. Geophys. Res. Lett., 30 , 1254. doi:10.1029/2002GL016272.

    • Search Google Scholar
    • Export Citation
  • Laternser, M., , and M. Schneebeli, 2002: Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat. Hazards, 27 , 201230.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, S., 1996: Graphical Models. Oxford University Press, 312 pp.

  • Lazar, B., , and M. Williams, 2008: Climate change in western ski areas: Potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100. Cold Reg. Sci. Technol., 51 , 219228.

    • Search Google Scholar
    • Export Citation
  • Martin, E., , G. Giraud, , Y. Lejeune, , and G. Boudart, 2001: Impact of climate change on avalanche hazard. Ann. Glaciol., 32 , 163167.

  • McCarroll, D., 1993: Modelling late-Holocene snow-avalanche activity: Incorporating a new approach to lichenometry. Earth Surf. Processes Landforms, 18 , 527539.

    • Search Google Scholar
    • Export Citation
  • McCarroll, D., , J. A. Matthews, , and R. A. Shakesby, 1995: Late-Holocene snow-avalanche activity in southern Norway: Interpreting lichen size-frequency distributions using an alternative to simulation modelling. Earth Surf. Processes Landforms, 20 , 465471.

    • Search Google Scholar
    • Export Citation
  • McClung, D., 2001: Characteristics of terrain, snow supply and forest cover for avalanche initiation caused by logging. Ann. Glaciol., 32 , 223239.

    • Search Google Scholar
    • Export Citation
  • McClung, D., 2003a: Magnitude and frequency of avalanches in relation to terrain and forest cover. Arct. Antarct. Alp. Res., 35 , 8290.

    • Search Google Scholar
    • Export Citation
  • McClung, D., 2003b: Time arrival of slab avalanche masses. J. Geophys. Res., 108 , 2466. doi:10.1029/2002JB002299.

  • McClung, D., , and K. Lied, 1987: Statistical and geometrical definition of snow-avalanche runout. Cold Reg. Sci. Technol., 13 , 107119.

    • Search Google Scholar
    • Export Citation
  • McCollister, C., , K. Birkeland, , K. Hansen, , K. Aspinall, , and R. Comey, 2003: Exploring multi-scale spatial patterns in historical avalanche data, Jackson Hole Mountain Resort, Wyoming. Cold Reg. Sci. Technol., 37 , 299313.

    • Search Google Scholar
    • Export Citation
  • Mearns, L., , C. Rosenzweig, , and R. Goldberg, 1997: Mean and variance change in climate scenarios: Methods, agricultural applications, and measures of uncertainty. Climatic Change, 35 , 367396.

    • Search Google Scholar
    • Export Citation
  • Menzefricke, U., 1981: A Bayesian analysis of a change in the precision of a sequence of independent normal random variables at an unknown time point. Appl. Stat., 30 , 141146.

    • Search Google Scholar
    • Export Citation
  • Meunier, M., , and C. Ancey, 2004: Towards a conceptual approach to predetermining high-return-period avalanche run-out distances. J. Glaciol., 50 , 268278.

    • Search Google Scholar
    • Export Citation
  • Michener, W. K., , E. R. Blood, , K. L. Bildstein, , M. M. Brinson, , and L. R. Gardner, 1997: Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol. Appl., 7 , 770801.

    • Search Google Scholar
    • Export Citation
  • Mock, C. J., 1996: Avalanche climatology of Alyeska, Alaska, U.S.A. Arct. Alp. Res., 28 , 502508.

  • Mock, C. J., , and K. W. Birkeland, 2000: Snow avalanche climatology of the western United States mountain ranges. Bull. Amer. Meteor. Soc., 81 , 23672392.

    • Search Google Scholar
    • Export Citation
  • Mougin, P., 1922: Les avalanches en Savoie. Ministère de l’Agriculture, Direction Générale des Eaux et Forêts, Service des Grandes Forces Hydrauliques, Paris, Tech. Rep., 175–317.

    • Search Google Scholar
    • Export Citation
  • ONERC, 2008: Changements climatiques dans les Alpes: Impacts et risques naturels. ONERC Rapport Technique 1, 86 pp. [Available online at http://www.risknat.org/docs/Technical%20Report%20N%B01.pdf].

    • Search Google Scholar
    • Export Citation
  • Parent, E., , and J. Bernier, 2007: Le Raisonnement Bayésien: Modélisation et Inférence. Springer, 380 pp.

  • Paul, P., 2002: Reconstitution d’anomalies de paramètres climatiques et de fréquences de catastrophes naturelles (crues, sécheresses, tempêtes) au cours des 500 dernières années en Europe Centrale. Houille Blanche, 6/7 , 111114.

    • Search Google Scholar
    • Export Citation
  • Perreault, L., , J. Bernier, , B. Bobée, , and E. Parent, 2000a: Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited. J. Hydrol., 235 , 221241.

    • Search Google Scholar
    • Export Citation
  • Perreault, L., , J. Bernier, , B. Bobée, , and E. Parent, 2000b: Bayesian change-point analysis in hydrometeorological time series. Part 2. Comparison of change-point models and forecasting. J. Hydrol., 235 , 242263.

    • Search Google Scholar
    • Export Citation
  • ProClim, 1999: De pareils hivers à avalanches sont-ils encore normaux? Climate-Press, No. 5, ProClim—Forum for Climate and Global Change, Bern, Switzerland. [Available online http://www.proclim.ch/Products/ClimatePress/ClimatePress05F.pdf].

    • Search Google Scholar
    • Export Citation
  • Qu, X., , and A. Hall, 2006: Assessing snow albedo feedback in simulated climate change. J. Climate, 19 , 26172630.

  • Rao, A., , and W. Tirtotjondro, 1996: Investigation of changes in characteristics of hydrological time series by Bayesian methods. Stoch. Env. Res. Risk, 10A , 295317.

    • Search Google Scholar
    • Export Citation
  • Reardon, B. A., , G. T. Pederson, , C. J. Caruso, , and D. B. Fagre, 2008: Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree rings in Glacier National Park, Montana, U.S.A. Arct. Antarct. Alp. Res., 40 , 148160.

    • Search Google Scholar
    • Export Citation
  • Schaerer, P. A., 1977: Analysis of snow avalanche terrain. Can. Geotech. J., 14 , 281287.

  • Schneebeli, M., , M. Laternser, , and W. Ammann, 1997: Destructive snow avalanches and climate change in the Swiss Alps. Eclogae Geol. Helv., 90 , 457461.

    • Search Google Scholar
    • Export Citation
  • Seiler, W., 2006: Klimawandel im der Alpenraum Auswirkungen und Herausforderung: Les changements climatiques dans l’espace alpin: tendances, retombées et défis. Deuxième Manifestation Thématique: Changement du Climat dans L’Espace Alpin—Effets et défis. 31st Réunion du Comité Permanent, Galtür, Austria, 7–19. [Available online at http://www.cenat.ch/ressources/planat_product_fr_786.pdf].

    • Search Google Scholar
    • Export Citation
  • SLF, 2000: Der Lawinenwinter 1999: Ereignisanlyse. Institute for Snow and Avalanche Research, Davos Dorf, Switzerland, 588 pp.

  • Smith, A. F. M., 1975: A Bayesian approach to inference about a change-point in a sequence of random variables. Biometrika, 62 , 407416.

    • Search Google Scholar
    • Export Citation
  • Smith, M. J., , and D. M. McClung, 1997a: Avalanche frequency and terrain characteristics at Rogers’ Pass, British Columbia, Canada. J. Glaciol., 43 , 165171.

    • Search Google Scholar
    • Export Citation
  • Smith, M. J., , and D. M. McClung, 1997b: Characteristics and prediction of high-frequency avalanche runout. Arct. Alp. Res., 29 , 352357.

    • Search Google Scholar
    • Export Citation
  • Spiegelhalter, D. J., , N. Best, , B. Carlin, , and A. Van der Linde, 2002: Bayesian measures of model complexity and fit (with discussion). J. Roy. Stat. Soc., 64B , 583640.

    • Search Google Scholar
    • Export Citation
  • Stoffel, M., , M. Bollschweiler, , and G. R. Hassler, 2006: Differentiating past events on a cone influenced by debris-flow and snow avalanche activity—A dendrogeomorphological approach. Earth Surf. Processes Landforms, 31 , 14241437.

    • Search Google Scholar
    • Export Citation
  • Theurillat, J. P., , and A. Guisan, 2001: Potential impact of climate change on vegetation in the European Alps: A review. Climatic Change, 50 , 77109.

    • Search Google Scholar
    • Export Citation
  • Thibert, E., , R. Blanc, , C. Vincent, , and N. Eckert, 2008: Glaciological and volumetric mass balance measurements: An error analysis over 51 years, Glacier de Sarennes, French Alps. J. Glaciol., 54 , 522532.

    • Search Google Scholar
    • Export Citation
  • Vincent, C., 2002: Influence of climate change over the 20th century on four French glacier mass balances. J. Geophys. Res., 109 , 4375. doi:10.1029/2001JD000832.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Webster, P. J., , G. J. Holland, , J. A. Curry, , and H. R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 , 18441846.

    • Search Google Scholar
    • Export Citation
  • Wikle, C., 2003: Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology, 84 , 13821394.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 11
PDF Downloads 41 41 9

Assessing the Response of Snow Avalanche Runout Altitudes to Climate Fluctuations Using Hierarchical Modeling: Application to 61 Winters of Data in France

View More View Less
  • 1 UR ETNA, Cemagref Grenoble, Saint Martin d’Hères, France
© Get Permissions
Restricted access

Abstract

Snow avalanches are natural hazards strongly controlled by the mountain winter climate, but their recent response to climate change has thus far been poorly documented. In this paper, hierarchical modeling is used to obtain robust indexes of the annual fluctuations of runout altitudes. The proposed model includes a possible level shift, and distinguishes common large-scale signals in both mean- and high-magnitude events from the interannual variability. Application to the data available in France over the last 61 winters shows that the mean runout altitude is not different now than it was 60 yr ago, but that snow avalanches have been retreating since 1977. This trend is of particular note for high-magnitude events, which have seen their probability rates halved, a crucial result in terms of hazard assessment. Avalanche control measures, observation errors, and model limitations are insufficient explanations for these trends. On the other hand, strong similarities in the pattern of behavior of the proposed runout indexes and several climate datasets are shown, as well as a consistent evolution of the preferred flow regime. The proposed runout indexes may therefore be usable as indicators of climate change at high altitudes.

Corresponding author address: Nicolas Eckert, UR ETNA, Cemagref Grenoble, 2 Rue de la Papeterie, 38402 Saint Martin d’Hères, France. Email: nicolas.eckert@cemagref.fr

Abstract

Snow avalanches are natural hazards strongly controlled by the mountain winter climate, but their recent response to climate change has thus far been poorly documented. In this paper, hierarchical modeling is used to obtain robust indexes of the annual fluctuations of runout altitudes. The proposed model includes a possible level shift, and distinguishes common large-scale signals in both mean- and high-magnitude events from the interannual variability. Application to the data available in France over the last 61 winters shows that the mean runout altitude is not different now than it was 60 yr ago, but that snow avalanches have been retreating since 1977. This trend is of particular note for high-magnitude events, which have seen their probability rates halved, a crucial result in terms of hazard assessment. Avalanche control measures, observation errors, and model limitations are insufficient explanations for these trends. On the other hand, strong similarities in the pattern of behavior of the proposed runout indexes and several climate datasets are shown, as well as a consistent evolution of the preferred flow regime. The proposed runout indexes may therefore be usable as indicators of climate change at high altitudes.

Corresponding author address: Nicolas Eckert, UR ETNA, Cemagref Grenoble, 2 Rue de la Papeterie, 38402 Saint Martin d’Hères, France. Email: nicolas.eckert@cemagref.fr

Save