• Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126 , 10131021.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., and A. V. Fedorov, 2008: The mean energy balance in the tropical ocean. J. Mar. Res., 66 , 123.

  • Brown, J. N., and A. V. Fedorov, 2010a: Estimating the diapycnal transport contribution to warm water volume variations in the tropical Pacific Ocean. J. Climate, 23 , 221237.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., and A. V. Fedorov, 2010b: How much energy is transferred from the winds to the thermocline on ENSO time scales? J. Climate, 23 , 15631580.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1992: Comments on “The fast-wave limit and interannual oscillations”. J. Atmos. Sci., 49 , 19471949.

  • Cane, M. A., and E. S. Sarachik, 1977: Forced baroclinic ocean motions: II. The linear equatorial bounded case. J. Mar. Res., 35 , 395432.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and D. W. Moore, 1981: A note on low-frequency equatorial basin modes. J. Phys. Oceanogr., 11 , 15781584.

  • Cane, M. A., and E. S. Sarachik, 1981: The response of a linear baroclinic equatorial ocean to periodic forcing. J. Mar. Res., 39 , 651693.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., M. Münnich, and S. E. Zebiak, 1990: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part I: Linear analysis. J. Atmos. Sci., 47 , 15621577.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of Tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15 , 274298.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1992: Low-frequency reflection from a nonmeridional eastern ocean boundary and the use of coastal sea level to monitor eastern Pacific equatorial Kelvin waves. J. Phys. Oceanogr., 22 , 163183.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Nino & the Southern Oscillation. Elsevier, 324 pp.

  • Clarke, A. J., 2010: Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: The tilt and warm water volume modes. J. Phys. Oceanogr., 40 , 121137.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., S. Van Gorder, and G. Colantuono, 2007: Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J. Phys. Oceanogr., 37 , 10771091.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19 , 24512481.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2002: The response of the coupled tropical ocean-atmosphere to westerly wind bursts. Quart. J. Roy. Meteor. Soc., 128 , 123.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2007: Net energy dissipation rates in the tropical ocean and ENSO dynamics. J. Climate, 20 , 10991108.

  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288 , 19972002.

  • Fedorov, A. V., and S. G. H. Philander, 2001: A stability analysis of the tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14 , 30863101.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and J. Brown, 2009: Equatorial waves. Encyclopedia of Ocean Sciences, J. Steele, Ed., Academic Press, 3679–3695.

  • Fedorov, A. V., S. L. Harper, S. G. H. Philander, B. Winter, and A. Wittenberg, 2003: How predictable is El Niño? Bull. Amer. Meteor. Soc., 84 , 911919.

    • Search Google Scholar
    • Export Citation
  • Galanti, E., and E. Tziperman, 2000: ENSO’s phase locking to the seasonal cycle in the fast-SST, fast-wave, and mixed-mode regimes. J. Atmos. Sci., 57 , 29362950.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90 , 325340.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., J. D. Neelin, and F-F. Jin, 1993: Nonlinear tropical air–sea interaction in the fast-wave limit. J. Climate, 6 , 15231544.

  • Jin, F-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54 , 830847.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 2001: Low-frequency modes of tropical ocean dynamics. J. Climate, 14 , 38743881.

  • Jin, F-F., and J. D. Neelin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part I: Numerical results. J. Atmos. Sci., 50 , 34773503.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., and S-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26 , 29892992.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., M. J. McPhaden, and E. Firing, 2001: Equatorial Pacific ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr., 31 , 839849.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856-1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2003: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29 , 2125. doi:10.1029/2002GL015924.

  • McCreary, J. P., 1985: Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech., 17 , 359409.

  • Mechoso, C., J. D. Neelin, and J-Y. Yu, 2003: Testing simple models of ENSO. J. Atmos. Sci., 60 , 305318.

  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13 , 35513559.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., M. J. McPhaden, and G. C. Johnson, 2001: Vertical velocities and transports in the equatorial Pacific during 1993–99. J. Phys. Oceanogr., 31 , 32303248.

    • Search Google Scholar
    • Export Citation
  • Münnich, M., M. A. Cane, and S. E. Zebiak, 1991: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part II: Nonlinear cases. J. Atmos. Sci., 48 , 12381248.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48 , 584606.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., and A. V. Fedorov, 2003: Is El Niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci., 31 , 579594.

  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45 , 549566.

  • Stricherz, J. N., D. M. Legler, and J. J. O’Brien, 1997: Tropical Pacific Ocean. Vol. 2, TOGA Pseudo-Stress Atlas 1985–1994, COAPS Tech. Rep. 97-2, 177 pp. [Available from COAPS, The Florida State University, Tallahassee, FL 32306].

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Wang, C., 2001: A unified oscillator model for the El Niño–Southern Oscillation. J. Climate, 14 , 98115.

  • Wang, C., S-P. Xie, and J. A. Carton, 2004: Earth’s Climate: The Ocean-Atmosphere Interaction. Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 405 pp.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2004: Extended wind stress analyses for ENSO. J. Climate, 17 , 25262540.

  • Zakharov, V. E., 1968: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys., 9 , 190194. doi:10.1007/BF00913182.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 6 6 6

Ocean Response to Wind Variations, Warm Water Volume, and Simple Models of ENSO in the Low-Frequency Approximation

View More View Less
  • 1 Yale University, New Haven, Connecticut
Restricted access

Abstract

Physical processes that control ENSO are relatively fast. For instance, it takes only several months for a Kelvin wave to cross the Pacific basin (Tk ≈ 2 months), while Rossby waves travel the same distance in about half a year. Compared to such short time scales, the typical periodicity of El Niño is much longer (T ≈ 2–7 yr). Thus, ENSO is fundamentally a low-frequency phenomenon in the context of these faster processes. Here, the author takes advantage of this fact and uses the smallness of the ratio εk = Tk/T to expand solutions of the ocean shallow-water equations into power series (the actual parameter of expansion also includes the oceanic damping rate). Using such an expansion, referred to here as the low-frequency approximation, the author relates thermocline depth anomalies to temperature variations in the eastern equatorial Pacific via an explicit integral operator. This allows a simplified formulation of ENSO dynamics based on an integro-differential equation. Within this formulation, the author shows how the interplay between wind stress curl and oceanic damping rates affects 1) the amplitude and periodicity of El Niño and 2) the phase lag between variations in the equatorial warm water volume and SST in the eastern Pacific. A simple analytical expression is derived for the phase lag. Further, applying the low-frequency approximation to the observed variations in SST, the author computes thermocline depth anomalies in the western and eastern equatorial Pacific to show a good agreement with the observed variations in warm water volume. Ultimately, this approach provides a rigorous framework for deriving other simple models of ENSO (the delayed and recharge oscillators), highlights the limitations of such models, and can be easily used for decadal climate variability in the Pacific.

Corresponding author address: Alexey Fedorov, Dept. of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, CT 06511. Email: alexey.fedorov@yale.edu

Abstract

Physical processes that control ENSO are relatively fast. For instance, it takes only several months for a Kelvin wave to cross the Pacific basin (Tk ≈ 2 months), while Rossby waves travel the same distance in about half a year. Compared to such short time scales, the typical periodicity of El Niño is much longer (T ≈ 2–7 yr). Thus, ENSO is fundamentally a low-frequency phenomenon in the context of these faster processes. Here, the author takes advantage of this fact and uses the smallness of the ratio εk = Tk/T to expand solutions of the ocean shallow-water equations into power series (the actual parameter of expansion also includes the oceanic damping rate). Using such an expansion, referred to here as the low-frequency approximation, the author relates thermocline depth anomalies to temperature variations in the eastern equatorial Pacific via an explicit integral operator. This allows a simplified formulation of ENSO dynamics based on an integro-differential equation. Within this formulation, the author shows how the interplay between wind stress curl and oceanic damping rates affects 1) the amplitude and periodicity of El Niño and 2) the phase lag between variations in the equatorial warm water volume and SST in the eastern Pacific. A simple analytical expression is derived for the phase lag. Further, applying the low-frequency approximation to the observed variations in SST, the author computes thermocline depth anomalies in the western and eastern equatorial Pacific to show a good agreement with the observed variations in warm water volume. Ultimately, this approach provides a rigorous framework for deriving other simple models of ENSO (the delayed and recharge oscillators), highlights the limitations of such models, and can be easily used for decadal climate variability in the Pacific.

Corresponding author address: Alexey Fedorov, Dept. of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, CT 06511. Email: alexey.fedorov@yale.edu

Save