• Alfieri, L., P. Claps, P. D’Odorico, F. Laio, and T. Over, 2008: An analysis of the soil moisture feedback on convective and stratiform precipitation. J. Hydrometeor., 9 , 280291.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2007: Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J. Geophys. Res., 112 , D10108. doi:10.1029/2006JD008191.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, M. Bosilovich, P. Viterbo, Y. Zhang, and W. B. Rossow, 2003: Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990–1999. J. Geophys. Res., 108 , 8618. doi:10.1029/2002JD003127.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., G. B. Bonan, and S. Levis, 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19 , 41984206.

  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15 , 606623.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87 , 13811397.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10 , 278288.

    • Search Google Scholar
    • Export Citation
  • Douville, H., F. Chauvin, and H. Broqua, 2001: Influence of soil moisture on the Asian and African monsoons. J. Climate, 14 , 23812403.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5 , 8699.

  • Eltahir, E. A. B., 1998: A soil moisture-rainfall feedback mechanism. 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4 , 570583.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29 , 289305.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and E. Kestenare, 2002: The surface heat flux feedback, Part I: Estimates from observations in the Atlantic and the North Pacific. Climate Dyn., 19 , 622647.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11 , 23102324.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19 , 33373353.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., L. Zhou, R. B. Myneni, C. J. Tucker, D. Slayback, N. V. Shabanov, and J. Pinzon, 2003: The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett., 30 , 2147. doi:10.1029/2003GL018251.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. Van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 , 1241. doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004a: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5 , 10491063.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004b: Regions of Strong Coupling Between Soil Moisture and Precipitation. Science, 305 , 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: The contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37 , L02402. doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and L. Wu, 2004: Atmospheric response to North Pacific SST: The role of ocean atmosphere coupling. J. Climate, 17 , 18591882.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., M. Notaro, J. Kutzbach, and N. Liu, 2006: Assessing global vegetation–climate feedbacks from observations. J. Climate, 19 , 787814.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., 2008: Statistical identification of global hot spots in soil moisture feedbacks among IPCC AR4 models. J. Geophys. Res., 113 , D09101. doi:10.1029/2007JD009199.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., and Z. Liu, 2008: Statistical and dynamical assessment of vegetation feedbacks on climate over the boreal forest. Climate Dyn., 31 , 691712.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Z. Liu, and J. W. Williams, 2006: Observed vegetation–climate feedbacks in the United States. J. Climate, 19 , 763786.

  • Notaro, M., Y. Wang, Z. Liu, R. Gallimore, and S. Levis, 2008: Combined statistical and dynamical assessment of simulated vegetation–rainfall interactions in North Africa during the mid-Holocene. Global Change Biol., 14 , 347368.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36 , L14814. doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Salvucci, G. D., A. J. Saleem, and R. Kaufmann, 2002: Investigating soil moisture feedbacks on precipitation with tests of Granger causality. Adv. Water Resour., 25 , 13051312.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12 , 722741.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., P. Viterbo, D. Lüthi, and C. Schär, 2004: Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin. J. Climate, 17 , 20392057.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Luethi, M. Litschi, and C. Schär, 2006a: Land–atmosphere coupling and climate change in Europe. Nature, 443 , 205209.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2006b: Soil moisture memory in AGCM simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) data. J. Hydrometeor., 7 , 10901112.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99 , 125161.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. LeRoy Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and R. J. Ellis, 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33 , L03404. doi:10.1029/2005GL025252.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wang, Y., M. Notaro, Z. Liu, R. Gallimore, S. Levis, and J. E. Kutzbach, 2008: Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two climate models. Climate Past, 4 , 5967.

    • Search Google Scholar
    • Export Citation
  • Wei, J., R. E. Dickinson, and H. Chen, 2008: A negative soil moisture–precipitation relationship and its causes. J. Hydrometeor., 9 , 13641376.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., W-C. Wang, and J. Wei, 2008: Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113 , D17119. doi:10.1029/2008JD009807.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 1 1 1

Statistical Analyses of Land–Atmosphere Feedbacks and Their Possible Pitfalls

View More View Less
  • 1 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Restricted access

Abstract

In some regions of the world, soil moisture has a typical memory for atmospheric processes and can also feed back to the latter. Thus, a better understanding of feedbacks between soil moisture and the atmosphere could provide promising perspectives for increased seasonal predictability. Besides numerical simulations, statistical analysis of existing GCM simulations or observational data has been used to study such feedbacks. By referring to a recent statistical analysis of soil moisture–precipitation feedbacks in GCM simulations, the authors illustrate potential pitfalls of statistical approaches in this context: (i) most importantly, apparent soil moisture–precipitation feedbacks can often as well or even better be attributed to the influence of sea surface temperatures (SSTs) on precipitation and (ii) the discrepancy between different GCMs is large, which makes the aggregation of individual model results difficult. These aspects need to be carefully evaluated in statistical analyses of land–atmosphere coupling. Results for soil moisture–temperature feedbacks complement the precipitation analysis.

Corresponding author’s address: Boris Orlowsky, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstr. 16, CH-8092 Zurich, Switzerland. Email: boris.orlowsky@env.ethz.ch

Abstract

In some regions of the world, soil moisture has a typical memory for atmospheric processes and can also feed back to the latter. Thus, a better understanding of feedbacks between soil moisture and the atmosphere could provide promising perspectives for increased seasonal predictability. Besides numerical simulations, statistical analysis of existing GCM simulations or observational data has been used to study such feedbacks. By referring to a recent statistical analysis of soil moisture–precipitation feedbacks in GCM simulations, the authors illustrate potential pitfalls of statistical approaches in this context: (i) most importantly, apparent soil moisture–precipitation feedbacks can often as well or even better be attributed to the influence of sea surface temperatures (SSTs) on precipitation and (ii) the discrepancy between different GCMs is large, which makes the aggregation of individual model results difficult. These aspects need to be carefully evaluated in statistical analyses of land–atmosphere coupling. Results for soil moisture–temperature feedbacks complement the precipitation analysis.

Corresponding author’s address: Boris Orlowsky, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstr. 16, CH-8092 Zurich, Switzerland. Email: boris.orlowsky@env.ethz.ch

Save