• AchutaRao, K. M., and K. R. Sperber, 2006: ENSO simulation in coupled ocean–atmosphere models: Are the current models better? Climate Dyn., 27 , 115. doi:10.1007/s00382-006-0119-7.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., and J. P. McCreary, 1985: On the role of the Indian Ocean in a coupled ocean–atmosphere model of El Niño and the Southern Oscillation. J. Atmos. Sci., 42 , 24392444.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., 2010: Moist dynamical linkage between the equatorial Indian Ocean and the south Asian monsoon trough. J. Atmos. Sci., 67 , 589610.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and K. R. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50-day) variability. J. Atmos. Sci., 62 , 27262748.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics in the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50 , 23052330.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18 , 302319.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Betts, A., and M. Miller, 1986: A new convective adjustment scheme. Part II: Single column test using GATE wave, BOMEX, ATEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. Giese, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Clarke, A., and S. Van Gorder, 2003: Improving El Nino prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett., 30 , 1399. doi:10.1029/2002GL016673.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643667.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., V. Semenov, and M. Latif, 2006: Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys. Res. Lett., 33 , L11701. doi:10.1029/2006GL025871.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. Bradley, D. Rogers, J. Edson, and G. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Gordon, A., 2005: Oceanography of the Indonesian Seas and their throughflow. Oceanography, 18 , 1427.

  • Jansen, M., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22 , 550567.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264 , 772.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., and J. T. Potemra, 2008: Sensitivity of tropical rainfall to Banda Sea diffusivity in the Community Climate System Model. J. Climate, 21 , 64456454.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., and S. Nigam, 2006: ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: Realistic representation? J. Climate, 19 , 43604377.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29 , 2125. doi:10.1029/2002GL015924.

  • Kessler, W. S., M. McPhaden, and K. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100 , (C6). 1061310631.

    • Search Google Scholar
    • Export Citation
  • Kida, S., and K. J. Richards, 2009: Seasonal sea surface temperature variability in the Indonesian Seas. J. Geophys. Res., 114 , C06016. doi:10.1029/2008JC005150.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., R. A. Colman, N. R. Smith, and S. B. Power, 1996: A recent change in the mean state of the Pacific basin climate: Observational evidence and atmospheric and oceanic responses. J. Geophys. Res., 101 , 2048320499.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19 , 16241651.

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., and I-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19 , 17841801.

  • Kumar, A., Q. Zhang, P. Peng, and B. Jha, 2005: SST-forced atmospheric variability in an atmospheric general circulation model. J. Climate, 18 , 39533967.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. A. Knaff, 2000: How much skill was there in forecasting the very strong 1997/98 El Niño? Bull. Amer. Meteor. Soc., 81 , 21072120.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363404.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103 , (C7). 1437514393.

  • Lengaigne, M., J. P. Boulanger, C. Menkes, P. Delecluse, and J. Slingo, 2004: Westerly wind events in the tropical Pacific and their influence on the coupled ocean–atmosphere system: A review. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 49–69.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., R. Zhang, S. K. Behera, Y. Masumoto, F-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23 , 726742.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2008: Evolution of the 2006–07 El Niño: The role of intraseasonal to interannual time scale dynamics. Adv. Geosci., 14 , 219230.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105 , 32953306.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21 , 59045924.

    • Search Google Scholar
    • Export Citation
  • Neelin, D. J., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., and N. Schneider, 2007: Interannual variations of the Indonesian throughflow. J. Geophys. Res., 112 , C05035. doi:10.1029/2006JC003808.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., S. L. Hautala, J. Sprintall, and W. Pandoe, 2002: Interaction between the Indonesian Seas and the Indian Ocean in observations and numerical models. J. Phys. Oceanogr., 32 , 18381854.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122 , 13851404.

  • Schumacher, C., and R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split explicit, free-surface, topography-following coordinate ocean model. Ocean Modell., 9 , 347404.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282 , 728731.

  • Song, Q., G. A. Veechi, and A. J. Rosati, 2007: Indian Ocean variability in the GFDL coupled climate model. J. Climate, 20 , 28952916.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., A. L. Gordon, R. Murtugudde, and R. D. Susanto, 2000: A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J. Geophys. Res., 105 , (C7). 1721717230.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Timmermann, A., and F-F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29 , 1003. doi:10.1029/2001GL013369.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. Latif, and A. Villwock, 2000: The coupled CGM ECHO-2. Part II: Indian Ocean response to ENSO. J. Climate, 13 , 13711383.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103 , 1424114259.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54 , 7286.

  • Watanabe, M., and F. F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical-convective response to El Niño. J. Climate, 16 , 11211139.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17 , 40194031.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29 , 1204. doi:10.1029/2001GL014098.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 15 15 15

Potential Impact of the Tropical Indian Ocean–Indonesian Seas on El Niño Characteristics

View More View Less
  • 1 International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 2 International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, and Earth Simulator Center, Japan Agency for Marine Earth Science and Technology, Yokohama, Japan
  • | 3 International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

Diagnostics performed with twentieth-century (1861–2000) ensemble integrations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1) suggest that, during the developing phase, El Niño events that co-occur with the Indian Ocean Dipole Zonal Mode (IODZM; class 1) are stronger than those without (class 2). Also, during class 1 events coherent sea surface temperature (SST) anomalies develop in the Indonesian seas that closely follow the life cycle of IODZM. This study investigates the effect of these regional SST anomalies (equatorial Indian Ocean and Indonesian seas) on the amplitude of the developing El Niño.

An examination of class 1 minus class 2 composites suggests two conditions that could lead to a strong El Niño in class 1 events: (i) during January, ocean–atmosphere conditions internal to the equatorial Pacific are favorable for the development of a stronger El Niño and (ii) during May–June, coinciding with the development of regional SST anomalies, an abrupt increase in westerly wind anomalies is noticeable over the equatorial western Pacific with a subsequent increase in thermocline and SST anomalies over the eastern equatorial Pacific. This paper posits the hypothesis that, under favorable conditions in the equatorial Pacific, regional SST anomalies may enable the development of a stronger El Niño.

Owing to a wealth of feedbacks in CM2.1, solutions from a linear atmosphere model forced with May–June anomalous precipitation and anomalous SST from selected areas over the equatorial Indo-Pacific are examined. Consistent with our earlier study, the net Kelvin wave response to contrasting tropical Indian Ocean heating anomalies cancels over the equatorial western Pacific. In contrast, Indonesian seas SST anomalies account for about 60%–80% of the westerly wind anomalies over the equatorial western Pacific and also induce anomalous precipitation over the equatorial central Pacific. It is argued that the feedback between the precipitation and circulation anomalies results in an abrupt increase in zonal wind anomalies over the equatorial western Pacific.

Encouraged by these results, the authors further examined the processes that cause cold SST anomalies over the Indonesian seas using an ocean model. Sensitivity experiments suggest that local wind anomalies, through stronger surface heat loss and evaporation, and subsurface upwelling are the primary causes. The present results imply that in coupled models, a proper representation of regional air–sea interactions over the equatorial Indo-Pacific warm pool may be important to understand and predict the amplitude of El Niño.

Corresponding author address: Dr. H. Annamalai, IPRC/SOEST, University of Hawaii at Manoa, 1680 East West Road, Honolulu, HI 96822. Email: hanna@hawaii.edu

Abstract

Diagnostics performed with twentieth-century (1861–2000) ensemble integrations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1) suggest that, during the developing phase, El Niño events that co-occur with the Indian Ocean Dipole Zonal Mode (IODZM; class 1) are stronger than those without (class 2). Also, during class 1 events coherent sea surface temperature (SST) anomalies develop in the Indonesian seas that closely follow the life cycle of IODZM. This study investigates the effect of these regional SST anomalies (equatorial Indian Ocean and Indonesian seas) on the amplitude of the developing El Niño.

An examination of class 1 minus class 2 composites suggests two conditions that could lead to a strong El Niño in class 1 events: (i) during January, ocean–atmosphere conditions internal to the equatorial Pacific are favorable for the development of a stronger El Niño and (ii) during May–June, coinciding with the development of regional SST anomalies, an abrupt increase in westerly wind anomalies is noticeable over the equatorial western Pacific with a subsequent increase in thermocline and SST anomalies over the eastern equatorial Pacific. This paper posits the hypothesis that, under favorable conditions in the equatorial Pacific, regional SST anomalies may enable the development of a stronger El Niño.

Owing to a wealth of feedbacks in CM2.1, solutions from a linear atmosphere model forced with May–June anomalous precipitation and anomalous SST from selected areas over the equatorial Indo-Pacific are examined. Consistent with our earlier study, the net Kelvin wave response to contrasting tropical Indian Ocean heating anomalies cancels over the equatorial western Pacific. In contrast, Indonesian seas SST anomalies account for about 60%–80% of the westerly wind anomalies over the equatorial western Pacific and also induce anomalous precipitation over the equatorial central Pacific. It is argued that the feedback between the precipitation and circulation anomalies results in an abrupt increase in zonal wind anomalies over the equatorial western Pacific.

Encouraged by these results, the authors further examined the processes that cause cold SST anomalies over the Indonesian seas using an ocean model. Sensitivity experiments suggest that local wind anomalies, through stronger surface heat loss and evaporation, and subsurface upwelling are the primary causes. The present results imply that in coupled models, a proper representation of regional air–sea interactions over the equatorial Indo-Pacific warm pool may be important to understand and predict the amplitude of El Niño.

Corresponding author address: Dr. H. Annamalai, IPRC/SOEST, University of Hawaii at Manoa, 1680 East West Road, Honolulu, HI 96822. Email: hanna@hawaii.edu

Save