• Allen, D. R., and N. Nakamura, 2002: Dynamical reconstruction of the record low column ozone over Europe on 30 November 1999. Geophys. Res. Lett., 29 , 1362. doi:10.1029/2002GL014935.

    • Search Google Scholar
    • Export Citation
  • Altenhoff, A. M., O. Martius, M. Croci-Maspoli, C. Schwierz, and H. C. Davies, 2008: Linkage of atmospheric blocks and synoptic-scale Rossby waves: A climatological analysis. Tellus, 60A , 10531063.

    • Search Google Scholar
    • Export Citation
  • Antón, M., M. L. Cancillo, A. Serrano, J. M. Vaquero, and J. A. García, 2007: Ozone minihole over southwestern Spain during January 2004: Influence over ultraviolet radiation. Geophys. Res. Lett., 34 , L10808. doi:10.1029/2007GL029689.

    • Search Google Scholar
    • Export Citation
  • Antón, M., A. Serrano, M. L. Cancillo, and J. A. García, 2008: Total ozone and solar erythemal irradiance in southwestern Spain: Day-to-day variability and extreme episodes. Geophys. Res. Lett., 35 , L20804. doi:10.1029/2008GL035290.

    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., A. K. Weiss, and J. Staehelin, 2000: North Atlantic Oscillation modulates total ozone winter trends. Geophys. Res. Lett., 27 , 11311134.

    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. Garcia-Herrera, A. R. Lupo, and E. Hernández, 2006: A climatology of Northern Hemisphere blocking. J. Climate, 19 , 10421063.

    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, and R. M. Trigo, 2010: Application of blocking diagnosis methods to general circulation models. Part I. A novel detection scheme. Climate Dyn., in press, doi:10.1007/s00382-010-0767-5.

    • Search Google Scholar
    • Export Citation
  • Bojkov, R. D., and D. S. Balis, 2001: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1957–2000. Ann. Geophys., 19 , 797897.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., and L. L. Hood, 2003: Frequency of low-ozone events over northwestern Europe in 1952–1963 and 1990–2000. Geophys. Res. Lett., 30 , 2118. doi:10.1029/2003GL018431.

    • Search Google Scholar
    • Export Citation
  • Canziani, P. O., R. H. Compagnucci, and A. Bischoff, 2002: A study of impacts of tropospheric synoptic processes on the genesis and evolution of extreme total ozone anomalies over southern South America. J. Geophys. Res., 107 , 4741. doi:10.1029/2001JD000965.

    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and Coauthors, 1998: Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature, 391 , 675678.

    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., C. Schwierz, and H. C. Davies, 2007: Atmospheric blocking: Space–time links to the NAO and PNA. Climate Dyn., 29 , 713725.

    • Search Google Scholar
    • Export Citation
  • Dethof, A., and E. V. Hólm, 2004: Ozone assimilation in the ERA-40 reanalysis project. Quart. J. Roy. Meteor. Soc., 130 , 28512872. doi:10.1256/qj.03.196.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., D. N. Harrison, and J. Lawrence, 1929: Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions: Part III. Proc. Roy. Soc. London, 122A , 456486.

    • Search Google Scholar
    • Export Citation
  • Engelen, R. J., 1996: The effect of planetary waves on the total ozone deviations in the presence of a persistent blocking anticyclone system. J. Geophys. Res., 101 , (D22). 2877528784.

    • Search Google Scholar
    • Export Citation
  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx = NOx interaction. Nature, 315 , 207210.

    • Search Google Scholar
    • Export Citation
  • Farman, J. C., A. O’Neill, and R. Swinbank, 1994: The dynamics of the arctic polar vortex during the EASOE campaign. Geophys. Res. Lett., 21 , 11951198.

    • Search Google Scholar
    • Export Citation
  • Fusco, A. C., and M. L. Salby, 1999: Interannual variations of total ozone and their relationships to variations of planetary wave activity. J. Climate, 12 , 16191629.

    • Search Google Scholar
    • Export Citation
  • Grewe, V., and M. Dameris, 1997: Heterogeneous PSC ozone loss during an ozone minihole. Geophys. Res. Lett., 24 , 25032506.

  • Grewe, V., M. Dameris, and R. Sausen, 1998: Impact of stratospheric dynamics and chemistry on Northern Hemisphere midlatitude ozone loss. J. Geophys. Res., 103 , 2541725433.

    • Search Google Scholar
    • Export Citation
  • Hadjinicolaou, P., and J. A. Pyle, 2004: The impact of Arctic ozone depletion on northern middle latitudes: Interannual variability and dynamical control. J. Atmos. Chem., 47 , 2543.

    • Search Google Scholar
    • Export Citation
  • Harris, N. R. P., and Coauthors, 2008: Ozone trends at northern mid- and high latitudes—A European perspective. Ann. Geophys., 26 , 12071220.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., and B. E. Soukharev, 2005: Interannual variations of total ozone at northern midlatitudes correlated with stratospheric EP flux and potential vorticity. J. Atmos. Sci., 62 , 37243740.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., J. P. McCormack, and K. Labitzke, 1997: An investigation of dynamical contributions to midlatitude ozone trends in winter. J. Geophys. Res., 102 , 1307913093.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., S. Rossi, and M. Beulen, 1999: Trends in lower stratospheric zonal winds, Rossby wave breaking behavior and column ozone at northern midlatitudes. J. Geophys. Res., 104 , 2432124339.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., B. E. Soukharev, M. Fromm, and J. P. McCormack, 2001: Origin of extreme ozone minima at middle to high northern latitudes. J. Geophys. Res., 106 , 2092520940.

    • Search Google Scholar
    • Export Citation
  • Hudson, R. D., M. F. Andrade, M. B. Follette, and A. D. Frolov, 2006: The total ozone field separated into meteorological regimes—Part II: Northern Hemisphere mid-latitude total ozone trends. Atmos. Chem. Phys., 6 , 51835191.

    • Search Google Scholar
    • Export Citation
  • Iwao, K., and T. Hirooka, 2006: Dynamical quantifications of ozone minihole formation in both hemispheres. J. Geophys. Res., 111 , D02104. doi:10.1029/2005JD006333.

    • Search Google Scholar
    • Export Citation
  • James, P. M., 1998: A climatology of ozone miniholes over the Northern Hemisphere. Int. J. Climatol., 18 , 12871303.

  • James, P. M., and D. Peters, 2002: The Lagrangian structure of ozone miniholes and potential vorticity anomalies in the Northern Hemisphere. Ann. Geophys., 20 , 835846.

    • Search Google Scholar
    • Export Citation
  • James, P. M., D. Peters, and D. W. Waugh, 2000: Very low ozone episodes due to polar vortex displacement. Tellus, 52B , 11231137.

  • Keil, M., D. R. Jackson, and M. C. Hort, 2007: The January 2006 low ozone event over the UK. Atmos. Chem. Phys., 7 , 961972.

  • Koch, G., H. Wernli, C. Schwierz, J. Staehelin, and T. Peter, 2005: A composite study on the structure and formation of ozone miniholes and minihighs over central Europe. Geophys. Res. Lett., 32 , L12810. doi:10.1029/2004GL022062.

    • Search Google Scholar
    • Export Citation
  • Krzyscin, J. W., 2002: Long-term changes in ozone minihole event frequency over the Northern Hemisphere derived from ground-based measurements. Int. J. Climatol., 22 , 14251439.

    • Search Google Scholar
    • Export Citation
  • Lary, D. J., M. P. Chipperfield, J. A. Pyle, W. A. Norton, and L. P. Riishojgaard, 1995: Three-dimensional tracer initialization and general diagnostic using equivalent PV latitude–potential temperature coordinates. Quart. J. Roy. Meteor. Soc., 121 , 187210.

    • Search Google Scholar
    • Export Citation
  • Lowe, D., A. R. MacKenzie, H. Schlager, C. Voigt, A. Dornbrack, M. J. Mahoney, and F. Cairo, 2006: Liquid particle composition and heterogeneous reactions in a mountain wave polar stratospheric cloud. Atmos. Chem. Phys., 6 , 36113623.

    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36 , L14806. doi:10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., and L. L. Hood, 1997: The frequency and size of ozone “minihole” events at northern midlatitudes in February. Geophys. Res. Lett., 24 , 26472650.

    • Search Google Scholar
    • Export Citation
  • Nash, E. R., P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101 , 94719478.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., L. R. Lait, and M. R. Schoeberl, 1988: The morphology and meteorology of Southern Hemisphere spring total ozone miniholes. Geophys. Res. Lett., 15 , 923926.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., and V. Limpasuvan, 2001: The North Atlantic Oscillation and the occurrences of ozone miniholes. Geophys. Res. Lett., 28 , 40994102.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., and F. J. Doblas-Reyes, 2003: Ozone signatures of climate patterns over the Euro–Atlantic sector in the spring. Quart. J. Roy. Meteor. Soc., 129 , 32513263.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., and G. Nikulin, 2006: A low ozone episode during the European heatwave of August 2003. Quart. J. Roy. Meteor. Soc., 132 , 667680.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., D. B. Stephenson, and F. J. Doblas-Reyes, 1998: Storm tracks signature in total ozone during Northern Hemisphere winter. Geophys. Res. Lett., 25 , 24132416.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., and Coauthors, 2003: Summertime low-ozone episodes over northern high latitudes. Quart. J. Roy. Meteor. Soc., 129 , 32653276.

    • Search Google Scholar
    • Export Citation
  • Pelly, J., and B. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60 , 743755.

  • Peters, D., and D. W. Waugh, 1996: Influence of barotropic shear on the poleward advection of upper-tropospheric air. J. Atmos. Sci., 53 , 30133031.

    • Search Google Scholar
    • Export Citation
  • Peters, D., and G. Entzian, 1999: Longitude-dependent decadal changes of total ozone in boreal months during 1979–1992. J. Climate, 12 , 10381048.

    • Search Google Scholar
    • Export Citation
  • Peters, D., J. Egger, and G. Entzian, 1995: Dynamical aspects of ozone minihole formation. Meteor. Atmos. Phys., 55 , 205214.

  • Petzoldt, K., 1999: The role of dynamics in total ozone deviations from their long-term mean over the Northern Hemisphere. Ann. Geophys., 17 , 231241.

    • Search Google Scholar
    • Export Citation
  • Petzoldt, K., B. Naujokat, and K. Neugebohren, 1994: Correlation between stratospheric temperature, total ozone and tropospheric weather systems. Geophys. Res. Lett., 21 , 12031206.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and R. Stolarski, 2002: Changes in column ozone correlated with the stratospheric EP flux. J. Meteor. Soc. Japan, 80 , 849862.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1950: The role of vertical motions in ozone–weather relationships. J. Meteor., 7 , 263267.

  • Reid, S. J., A. F. Tuck, and G. Kildaris, 2000: On the changing abundance of ozone minima at northern midlatitudes. J. Geophys. Res., 105 , 1216912180.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Part II: The climatology of blocking action. Tellus, 2 , 275301.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and P. F. Callaghan, 1993: Fluctuations of total ozone and their relationship to stratospheric air motions. J. Geophys. Res., 98 , 27152727.

    • Search Google Scholar
    • Export Citation
  • Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31 , 61256128.

    • Search Google Scholar
    • Export Citation
  • Semane, N., H. Teitelbaum, and C. Basdevant, 2002: A very deep ozone minihole in the Northern Hemisphere stratosphere at mid-latitudes during the winter of 2000. Tellus, 54A , 382389.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37 , 275316.

  • Solomon, S., R. W. Portmann, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick, 1996: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res., 101 , 67136727.

    • Search Google Scholar
    • Export Citation
  • Staehelin, J., N. R. P. Harris, C. Appenzeller, and J. Eberhard, 2001: Ozone trends: A review. Rev. Geophys., 39 , 231290.

  • Steinbrecht, W., H. Claude, U. Kohler, and K. P. Hoinka, 1998: Correlations between tropopause height and total ozone: Implications for long-term changes. J. Geophys. Res., 103 , 1918319192.

    • Search Google Scholar
    • Export Citation
  • Stenke, A., and V. Grewe, 2004: Impact of dynamically induced ozone minihole events on PSC formation and chemical ozone destruction. Adv. Space Res., 33 , 10621067.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., P. Bloomfield, and R. D. McPeters, 1991: Total ozone trends deduced from Nimbus 7 TOMS data. Geophys. Res. Lett., 18 , 10151018.

    • Search Google Scholar
    • Export Citation
  • Teitelbaum, H., M. Moustaoui, and M. Fromm, 2001: Exploring polar stratospheric cloud and ozone minihole formation: The primary importance of synoptic-scale flow perturbations. J. Geophys. Res., 106 , 2817328188.

    • Search Google Scholar
    • Export Citation
  • Tilmes, S., R. Muller, A. Engel, M. Rex, and J. M. Russell III, 2006: Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005. Geophys. Res. Lett., 33 , L20812. doi:10.1029/2006GL026925.

    • Search Google Scholar
    • Export Citation
  • Tyrlis, R., and B. J. Hoskins, 2008a: Aspects of Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65 , 16381652.

  • Tyrlis, R., and B. J. Hoskins, 2008b: The morphology of Northern Hemisphere blocking. J. Atmos. Sci., 65 , 16531665.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • Woollings, T., A. Charlton-Perez, S. Ineson, A. G. Marshall, and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115 , D06108. doi:10.1029/2009JD012742.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 44 0
PDF Downloads 46 24 0

Atmospheric Blocking Signatures in Total Ozone and Ozone Miniholes

View More View Less
  • 1 CGUL-IDL, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
  • | 2 Departamento de Física, Universidad de Extremadura, Badajoz, Spain, and Centro de Geofísica de Evora, Universidade de Évora, Évora, Portugal
  • | 3 Departamento de Física, Universidad de Extremadura, Badajoz, Spain
Restricted access

Abstract

This paper analyzes the statistical relationship between the total ozone column (TOC) and atmospheric blocking using 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data for the 1978–98 period, with special emphasis on winter and the European and eastern Pacific sectors. Regional blocking occurrence is accompanied by a decrease of TOC within the anticyclonic circulation region and a distinctive ozone increase upstream and downstream (upstream and south) in the Pacific (European) sector. Blocking significantly enhances the likelihood of low TOC extremes, especially over the Scandinavian and the Alaska Peninsulas, where more than 50% of winter blocks lead to TOC values in the lowest tail of the distribution. The relationship between ozone miniholes and blocking is confined to the high latitudes of both basins and is strong in Europe, where about half of the ozone miniholes occur simultaneously with blocking. Blocking-related ozone miniholes (blocking ozone miniholes) are also among the most intense and persistent. Although blocking activity does not drive the interannual variability of regional ozone miniholes, blocking ozone miniholes account for up to two-thirds of the total observed trend of ozone miniholes in Europe. The polar vortex is proposed as a feasible candidate for explaining the enhanced coupling of blocking and ozone miniholes in Europe and its long-term modulation. Blocking ozone miniholes are consistent with an almost purely dynamic origin caused by horizontal transport of ozone-poor air and vertical motions working together at different levels to reduce ozone content. Although the contribution of the former is dominant, accounting for two-thirds of ozone reduction in the 330–850-K column, the effect of the latter becomes a distinctive feature of blocking ozone miniholes.

Corresponding author address: D. Barriopedro, CGUL-IDL, Faculdade de Ciências, Ed. C-8, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal. Email: dbarriopedro@fc.ul.pt

Abstract

This paper analyzes the statistical relationship between the total ozone column (TOC) and atmospheric blocking using 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data for the 1978–98 period, with special emphasis on winter and the European and eastern Pacific sectors. Regional blocking occurrence is accompanied by a decrease of TOC within the anticyclonic circulation region and a distinctive ozone increase upstream and downstream (upstream and south) in the Pacific (European) sector. Blocking significantly enhances the likelihood of low TOC extremes, especially over the Scandinavian and the Alaska Peninsulas, where more than 50% of winter blocks lead to TOC values in the lowest tail of the distribution. The relationship between ozone miniholes and blocking is confined to the high latitudes of both basins and is strong in Europe, where about half of the ozone miniholes occur simultaneously with blocking. Blocking-related ozone miniholes (blocking ozone miniholes) are also among the most intense and persistent. Although blocking activity does not drive the interannual variability of regional ozone miniholes, blocking ozone miniholes account for up to two-thirds of the total observed trend of ozone miniholes in Europe. The polar vortex is proposed as a feasible candidate for explaining the enhanced coupling of blocking and ozone miniholes in Europe and its long-term modulation. Blocking ozone miniholes are consistent with an almost purely dynamic origin caused by horizontal transport of ozone-poor air and vertical motions working together at different levels to reduce ozone content. Although the contribution of the former is dominant, accounting for two-thirds of ozone reduction in the 330–850-K column, the effect of the latter becomes a distinctive feature of blocking ozone miniholes.

Corresponding author address: D. Barriopedro, CGUL-IDL, Faculdade de Ciências, Ed. C-8, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal. Email: dbarriopedro@fc.ul.pt

Save