• Anderson, L., M. B. Abbott, and B. P. Finney, 2001: Holocene climate inferred from oxygen isotope ratios in lake sediments, Central Brooks Range, Alaska. Quat. Res., 55 , 313321.

    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long-term variations of daily insolation and Quaternary climate changes. J. Atmos. Sci., 35 , 23622367.

  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum. Part I: Experiments and large-scale features. Climate Past, 3 , 261277.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33 , L01702. doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2001: GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J. Atmos. Sci., 58 , 17841800.

    • Search Google Scholar
    • Export Citation
  • Chang, P., 1994: A study of the seasonal cycle of sea surface temperature in the tropical Pacific Ocean using reduced gravity models. J. Geophys. Res., 99 , (C4). 77257741.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25 , 477496.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Fang, and P. Chang, 2009: Pacific climate change and ENSO activity in the mid-Holocene. J. Climate, 22 , 923939.

  • Davey, M. K., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18 , 403420.

    • Search Google Scholar
    • Export Citation
  • Fang, Y., 2005: A coupled model study of the remote influence of ENSO on tropical Atlantic SST variability. Ph.D. thesis, Texas A&M University, 93 pp.

  • Harnik, N., and E. K. M. Chang, 2004: The effects of variations in jet width on the growth of baroclinic waves: Implications for midwinter Pacific storm track variability. J. Atmos. Sci., 61 , 2340.

    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., J. E. Kutzbach, Z. Liu, P. J. Bartlein, B. Otto-Bliesner, D. Muhs, I. C. Prentice, and R. S. Thompson, 2003: Mid-Holocene climates of the Americas: A dynamical response to changed seasonality. Climate Dyn., 20 , 663688.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kirby, M., S. Lund, M. Anderson, and B. Bird, 2007: Insolation forcing of Holocene climate change in Southern California: A sediment study from Lake Elsinore. J. Paleolimnol., 38 , 395417.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1981: Monsoon climate of the early Holocene: Climate experiment with the earth’s orbital parameters for 9000 years ago. Science, 214 , 5961.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and H. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60 , 14901503.

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45 , 24162427.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., P. R. Gent, J. M. Arblaster, B. L. Otto-Bliesner, E. C. Brady, and A. Craig, 2001: Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dyn., 17 , 515526.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49 , 16291641.

  • Nakamura, H., T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15 , 18551874.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams, and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., T. Miyasaka, Y. Kosaka, and H. Nakamura, 2009: Reproducibility and future projection of the midwinter storm-track activity over the Far East in the CMIP3 climate models in relation to “Haru-Ichiban” over Japan. J. Meteor. Soc. Japan, 87 , 581588.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2005: A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62 , 13671390.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., J. C. H. Chiang, and S. W. Son, 2010: The role of the central Asian mountains on the midwinter suppression of North Pacific storminess. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Penny, S., G. H. Roe, and D. S. Battisti, 2010: The source of the midwinter suppression in storminess over the North Pacific. J. Climate, 23 , 634648.

    • Search Google Scholar
    • Export Citation
  • Pokras, E. M., and A. C. Mix, 1987: Earth’s precession cycle and Quaternary climatic change in tropical Africa. Nature, 326 , 486487.

    • Search Google Scholar
    • Export Citation
  • Rossignol-Strick, M., 1985: Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 49 , 237263.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., M. Ting, and L. M. Polvani, 2009: The effect of topography on storm-track intensity in a relatively simple general circulation model. J. Atmos. Sci., 66 , 393411.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. S., C. H. Whitlock, P. J. Bartlein, S. P. Harrison, and W. G. Spaulding, 1993: Climatic changes in the western United States since 18,000 yr BP. Global Climates since the Last Glacial Maximum, H. E. Wright Jr., et al., Eds., University of Minnesota Press, 468–513.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., G. H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45 , 439462.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 91, Academic Press, 627 pp.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yin, J., 2002: The peculiar behavior of baroclinic waves during the midwinter suppression of the Pacific storm track. Ph.D. thesis, University of Washington, 121 pp.

  • Zhang, Y. Q., 1997: On the mechanisms of the mid-winter suppression of the Pacific storm track. Ph.D. thesis, Princeton University, 152 pp.

  • Zhang, Y. Q., and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm tracks. J. Atmos. Sci., 56 , 34163455.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 43 0
PDF Downloads 31 15 0

Was the North Pacific Wintertime Climate Less Stormy during the Mid-Holocene?

View More View Less
  • 1 Department of Geography, and Center for Atmospheric Sciences, University of California, Berkeley, Berkeley, California
Restricted access

Abstract

Model evidence is presented to make the case that the midlatitude North Pacific wintertime transient eddy activity may have been significantly weaker during the mid-Holocene (∼6000 yr BP). A simulation of the mid-Holocene climate in an atmospheric general circulation model coupled to a reduced gravity ocean model showed significant reduction to transient eddy activity, up to 30% in the main storm-track region. The reduced baroclinic eddy activity is associated with basinwide climate changes over the northern and tropical Pacific, including a deepening of the Aleutian low, colder SSTs in the western and central North Pacific, a strengthening and southward shift of the subtropical jet, and a strengthened South Pacific convergence zone. These associated climate changes are consistently simulated across a range of Paleoclimate Modeling Intercomparison Project Phase II (PMIP2) coupled models forced with mid-Holocene climate forcings, suggesting they are a robust response to mid-Holocene orbital forcing. The authors link the mid-Holocene climate changes to two related modern-day analogs: (i) interannual variations in wintertime North Pacific storminess and (ii) the phenomenon of midwinter suppression whereby North Pacific transient eddy activity in today’s climate is reduced in midwinter. In both instances, the associated North Pacific climate conditions resemble those seen in the mid-Holocene simulations. While it remains to be seen which analog is dynamically more appropriate, the latter link—midwinter suppression—offers the simple physical interpretation that the mid-Holocene reduction in storminess is a consequence of a “more winterlike” climate resulting from the mid-Holocene precessional forcing.

* Current affiliation: The First Institute of Oceanography, SOA, Qingdao, China

Corresponding author address: Prof. John C. H. Chiang, University of California, Berkeley, 547 McCone Hall, Berkeley, CA 94705. Email: jchiang@atmos.berkeley.edu

Abstract

Model evidence is presented to make the case that the midlatitude North Pacific wintertime transient eddy activity may have been significantly weaker during the mid-Holocene (∼6000 yr BP). A simulation of the mid-Holocene climate in an atmospheric general circulation model coupled to a reduced gravity ocean model showed significant reduction to transient eddy activity, up to 30% in the main storm-track region. The reduced baroclinic eddy activity is associated with basinwide climate changes over the northern and tropical Pacific, including a deepening of the Aleutian low, colder SSTs in the western and central North Pacific, a strengthening and southward shift of the subtropical jet, and a strengthened South Pacific convergence zone. These associated climate changes are consistently simulated across a range of Paleoclimate Modeling Intercomparison Project Phase II (PMIP2) coupled models forced with mid-Holocene climate forcings, suggesting they are a robust response to mid-Holocene orbital forcing. The authors link the mid-Holocene climate changes to two related modern-day analogs: (i) interannual variations in wintertime North Pacific storminess and (ii) the phenomenon of midwinter suppression whereby North Pacific transient eddy activity in today’s climate is reduced in midwinter. In both instances, the associated North Pacific climate conditions resemble those seen in the mid-Holocene simulations. While it remains to be seen which analog is dynamically more appropriate, the latter link—midwinter suppression—offers the simple physical interpretation that the mid-Holocene reduction in storminess is a consequence of a “more winterlike” climate resulting from the mid-Holocene precessional forcing.

* Current affiliation: The First Institute of Oceanography, SOA, Qingdao, China

Corresponding author address: Prof. John C. H. Chiang, University of California, Berkeley, 547 McCone Hall, Berkeley, CA 94705. Email: jchiang@atmos.berkeley.edu

Save