Dust Aerosol Important for Snowball Earth Deglaciation

Dorian S. Abbot Department of Geophysical Sciences, University of Chicago, Chicago, Illinois

Search for other papers by Dorian S. Abbot in
Current site
Google Scholar
PubMed
Close
and
Itay Halevy Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Itay Halevy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Most previous global climate model simulations could only produce the termination of Snowball Earth episodes at CO2 partial pressures of several tenths of a bar, which is roughly an order of magnitude higher than recent estimates of CO2 levels during and shortly after Snowball events. These simulations have neglected the impact of dust aerosols on radiative transfer, which is an assumption of potentially grave importance. In this paper it is argued, using the Dust Entrainment and Deposition (DEAD) box model driven by GCM results, that atmospheric dust aerosol concentrations may have been one to two orders of magnitude higher during a Snowball Earth event than today. It is furthermore asserted on the basis of calculations using NCAR’s Single Column Atmospheric Model (SCAM)—a radiative–convective model with sophisticated aerosol, cloud, and radiative parameterizations—that when the surface albedo is high, such increases in dust aerosol loading can produce several times more surface warming than an increase in the partial pressure of CO2 from 10−4 to 10−1 bar. Therefore the conclusion is reached that including dust aerosols in simulations may reconcile the CO2 levels required for Snowball termination in climate models with observations.

Corresponding author address: Dorian S. Abbot, Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637. Email: abbot@uchicago.edu

Abstract

Most previous global climate model simulations could only produce the termination of Snowball Earth episodes at CO2 partial pressures of several tenths of a bar, which is roughly an order of magnitude higher than recent estimates of CO2 levels during and shortly after Snowball events. These simulations have neglected the impact of dust aerosols on radiative transfer, which is an assumption of potentially grave importance. In this paper it is argued, using the Dust Entrainment and Deposition (DEAD) box model driven by GCM results, that atmospheric dust aerosol concentrations may have been one to two orders of magnitude higher during a Snowball Earth event than today. It is furthermore asserted on the basis of calculations using NCAR’s Single Column Atmospheric Model (SCAM)—a radiative–convective model with sophisticated aerosol, cloud, and radiative parameterizations—that when the surface albedo is high, such increases in dust aerosol loading can produce several times more surface warming than an increase in the partial pressure of CO2 from 10−4 to 10−1 bar. Therefore the conclusion is reached that including dust aerosols in simulations may reconcile the CO2 levels required for Snowball termination in climate models with observations.

Corresponding author address: Dorian S. Abbot, Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637. Email: abbot@uchicago.edu

Save
  • Abbot, D. S., and E. Tziperman, 2009: Controls on the activation and strength of a high-latitude convective cloud feedback. J. Atmos. Sci., 66 , 519529.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and R. T. Pierrehumbert, 2010: Mudball: Surface dust and Snowball Earth deglaciation. J. Geophys. Res., 115 , D03104. doi:10.1029/2009JD012007.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., M. Huber, G. Bousquet, and C. C. Walker, 2009: High-CO2 cloud radiative forcing feedback over both land and ocean in a global climate model. Geophys. Res. Lett., 36 , L05702. doi:10.1029/2008GL036703.

    • Search Google Scholar
    • Export Citation
  • Allen, P. A., and J. I. Etienne, 2008: Sedimentary challenge to Snowball Earth. Nat. Geosci., 1 , 817825.

  • Bao, H. M., J. R. Lyons, and C. M. Zhou, 2008: Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature, 453 , 504506.

    • Search Google Scholar
    • Export Citation
  • Bao, H. M., I. J. Fairchild, P. M. Wynn, and C. Spötl, 2009: Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science, 323 , 119112.

    • Search Google Scholar
    • Export Citation
  • Bierwirth, E., and Coauthors, 2009: Spectral surface albedo over Morocco and its impact on radiative forcing of Saharan dust. Tellus, 61B , 252269.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, 2002: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochem. Cycles, 16 , 1021. doi:10.1029/2000GB001360.

    • Search Google Scholar
    • Export Citation
  • Caldeira, K., and J. F. Kasting, 1992: Susceptibility of the early Earth to irreversible glaciation caused by carbon-dioxide clouds. Nature, 359 , 226228.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note, NCAR/TN–464+STR, 214 pp.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., F. Fluteau, G. Ramstein, C. Ritz, and J. Besse, 2003: Is there a conflict between the Neoproterozoic glacial deposits and the Snowball Earth interpretation: An improved understanding with numerical modeling. Earth Planet. Sci. Lett., 208 , 101112.

    • Search Google Scholar
    • Export Citation
  • Dutsch, H. U., 1978: Vertical ozone distribution on a global scale. Pure Appl. Geophys., 116 , 511529.

  • Elliott, C., 2008: Influence of temperature and moisture availability on physical rock weathering along the Victoria Land coast, Antarctica. Antarct. Sci., 20 , 6167.

    • Search Google Scholar
    • Export Citation
  • Evans, D. A. D., 2000: Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Amer. J. Sci., 300 , 347433.

    • Search Google Scholar
    • Export Citation
  • Gurwell, M. A., E. A. Bergin, G. J. Melnick, and V. Tolls, 2005: Mars surface and atmospheric temperature during the 2001 global dust storm. Icarus, 175 , 2331.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. E. Truesdale, J. A. Pedretti, and J. C. Petch, cited. 2004: SCAM user’s guide. [Available online at http://www.ccsm.ucar.edu/models/atm-cam/docs/scam/].

    • Search Google Scholar
    • Export Citation
  • Halevy, I., R. T. Pierrehumbert, and D. P. Schrag, 2009: Radiative transfer in CO2-rich paleoatmospheres. J. Geophys. Res., 114 , D18112. doi:10.1029/2009JD011915.

    • Search Google Scholar
    • Export Citation
  • Hall, K., 1998: Rock temperatures and implications for cold region weathering. II: New data from Rothera, Adelaide Island, Antarctica. Permafrost Periglacial Processes, 9 , 4755.

    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., K. E. Kohfeld, C. Roelandt, and T. Claquin, 2001: The role of dust in climate changes today, at the Last Glacial Maximum and in the future. Earth Sci. Rev., 54 , 4380.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Higgins, J. A., and D. P. Schrag, 2003: Aftermath of a Snowball Earth. Geochem. Geophys. Geosyst., 4 , 1028. doi:10.1029/2002GC000403.

  • Hoffman, P. F., and Z-X. Li, 2009: A palaeogeographic context for Neoproterozoic glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 277 , 158172.

    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag, 1998: A Neoproterozoic Snowball Earth. Science, 281 , 13421346.

  • Hoffman, P. F., J. W. Crowley, D. T. Johnston, D. S. Jones, and D. P. Schrag, 2008: Snowball prevention questioned. Nature, 456 , E7. doi:10.1038/nature07655.

    • Search Google Scholar
    • Export Citation
  • Hyde, W. T., T. J. Crowley, S. K. Baum, and W. R. Peltier, 2000: Neoproterozoic ‘Snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405 , 425429.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: An appealing Snowball Earth that’s still hard to swallow. Science, 287 , 17341736.

  • Kirschvink, J., 1992: Late Proterozoic low-latitude global glaciation: The Snowball Earth. The Proterozoic Biosphere: A Multidisciplinary Study, J. Schopf and C. Klein, Eds., Cambridge University Press, 51–52.

    • Search Google Scholar
    • Export Citation
  • Konishchev, V. N., 1982: Characteristics of cryogenic weathering in the permafrost zone of the European USSR. Arct. Alp. Res., 14 , 261265.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., O. Boucher, and Y. Balkanski, 2006: Ice-free glacial northern Asia due to dust deposition on snow. Climate Dyn., 27 , 613625.

    • Search Google Scholar
    • Export Citation
  • Le Hir, G., G. Ramstein, Y. Donnadieu, and R. T. Pierrehumbert, 2007: Investigating plausible mechanisms to trigger a deglaciation from a hard Snowball Earth. C. R. Geosci., 339 , 274287.

    • Search Google Scholar
    • Export Citation
  • Le Hir, G., G. Ramstein, Y. Donnadieu, and Y. Godderis, 2008: Scenario for the evolution of atmospheric pCO2 during a Snowball Earth. Geology, 36 , 4750.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender, and C. Luo, 2006a: Change in atmospheric mineral aerosols in response to climate: Last Glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res., 111 , D10202. doi:10.1029/2005JD006653.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., M. Yoshioka, W. D. Collins, A. J. Conley, D. W. Fillmore, and D. B. Coleman, 2006b: Climate response and radiative forcing from mineral aerosols during the Last Glacial Maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys. Res. Lett., 33 , L20705. doi:10.1029/2006GL026126.

    • Search Google Scholar
    • Export Citation
  • McCaa, J., M. Rothstein, B. Eaton, J. Rosinski, E. Kluzek, and M. Vertenstein, cited. 2004: User’s guide to the NCAR Community Atmosphere Model (CAM 3.0). [Available online at http://www.ccsm.ucar.edu/models/atm-cam/docs/usersguide/].

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and I. Tegen, 1998: Climate response to soil dust aerosols. J. Climate, 11 , 32473267.

  • Oku, Y., I. Hirohiko, S. Haginoya, and Y. Ma, 2006: Recent trends in land surface temperature on the Tibetan Plateau. J. Climate, 19 , 29953003.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and Y. G. Liu, 2008: Carbon cycling and Snowball Earth. Reply. Nature, 456 , E9E10. doi:10.1038/nature07656.

  • Peltier, W. R., Y. G. Liu, and J. W. Crowley, 2007: Snowball Earth prevention by dissolved organic carbon remineralization. Nature, 450 , 813818.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2002: The hydrologic cycle in deep-time climate problems. Nature, 419 , 191198.

  • Pierrehumbert, R. T., 2004: High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature, 429 , 646649.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2005: Climate dynamics of a hard Snowball Earth. J. Geophys. Res., 110 , D01111. doi:10.1029/2004JD005162.

  • Pollard, D., and J. F. Kasting, 2005: Snowball Earth: A thin-ice solution with flowing sea glaciers. J. Geophys. Res., 110 , C07010. doi:10.1029/2004JC002525.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., and J. F. Kasting, 2006: Reply to comment by Stephen G. Warren and Richard E. Brandt on “Snowball Earth: A thin-ice solution with flowing sea glaciers”. J. Geophys. Res., 111 , C09017. doi:10.1029/2006JC003488.

    • Search Google Scholar
    • Export Citation
  • Segura, A., K. Krelove, J. F. Kasting, D. Sommerlatt, V. Meadows, D. Crisp, M. Cohen, and E. Mlawer, 2003: Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology, 3 , 689708.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., and O. B. Toon, 1999: Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res., 104 , (D8). 94239444.

    • Search Google Scholar
    • Export Citation
  • Tetzlaff, G., 1983: Albedo of the Sahara. Satellite Measurement of Radiation Budget Parameters, E. Raschke et al., Eds., 60–63.

  • Trindade, R. I. F., and M. Macouin, 2007: Palaeolatitude of glacial deposits and palaeogeography of Neoproterozoic ice ages. C. R. Geosci., 339 , 200211.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2006: Comment on “Snowball Earth: A thin-ice solution with flowing sea glaciers” by David Pollard and James F. Kasting. J. Geophys. Res., 111 , C09016. doi:10.1029/2005JC003411.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., R. E. Brandt, T. C. Grenfell, and C. P. Mckay, 2002: Snowball Earth: Ice thickness on the tropical ocean. J. Geophys. Res., 107 , 3167. doi:10.1029/2001JC001123.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. J., P. Ginoux, N. C. Hsu, M. D. Chou, and J. Joiner, 2002: Radiative forcing of Saharan dust: GOCART model simulations compared with ERBE data. J. Atmos. Sci., 59 , 736747.

    • Search Google Scholar
    • Export Citation
  • Yoshioka, M., N. M. Mahowald, A. J. Conley, W. D. Collins, D. W. Fillmore, C. S. Zender, and D. B. Coleman, 2007: Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Climate, 20 , 14451467.

    • Search Google Scholar
    • Export Citation
  • Zender, C. S., H. S. Bian, and D. Newman, 2003: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108 , 4416. doi:10.1029/2002JD002775.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 479 127 27
PDF Downloads 297 84 13