Land–Ocean Asymmetry of Tropical Precipitation Changes in the Mid-Holocene

Yang-Hui Hsu Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Yang-Hui Hsu in
Current site
Google Scholar
PubMed
Close
,
Chia Chou Research Center for Environmental Changes, Academia Sinica, and Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chia Chou in
Current site
Google Scholar
PubMed
Close
, and
Kuo-Yen Wei Department of Geosciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Kuo-Yen Wei in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A series of model experiments were conducted using an intermediate ocean–atmosphere–land model for a better understanding of a distinct land–sea asymmetry in tropical precipitation differences between the mid-Holocene and preindustrial climates. In austral (boreal) summer, most reduced (enhanced) precipitation occurs over continental convective regions, while most enhanced (reduced) precipitation occurs over oceanic convection zones. This land–sea asymmetry of tropical precipitation is particularly clear in austral summer. During the mid-Holocene, the solar forcing presents both spatial and seasonal asymmetric patterns. While the boreal summer insolation is stronger at high latitudes of the Northern Hemisphere in the mid-Holocene than at present, the austral summer insolation is weaker with a more spatially symmetric distribution about the equator. Because of the slow response time of the ocean to forcing, the direct insolation forcing of the current season is cancelled by the ocean memory of an earlier insolation forcing, which in the case of the mid-Holocene is opposite to the current season insolation forcing. As a result, tropical sea surface temperature variation, as well as the tropical atmospheric temperature and moisture changes, is small, which gives rise to a different precipitation response from under the condition of stronger atmospheric temperature and moisture changes, such as in the case of postindustrial global warming induced by an increased concentration of atmospheric greenhouse gases. Thus, the cancellation between the direct and memory effects of the seasonally asymmetric insolation forcing leaves the net energy into the atmosphere to be responsible for the land–sea asymmetry of tropical precipitation changes.

Corresponding author address: Chia Chou, Research Center for Environmental Changes, Academia Sinica, P.O. Box 1-48, Nankang, Taipei 11529, Taiwan. Email: chiachou@rcec.sinica.edu.tw

Abstract

A series of model experiments were conducted using an intermediate ocean–atmosphere–land model for a better understanding of a distinct land–sea asymmetry in tropical precipitation differences between the mid-Holocene and preindustrial climates. In austral (boreal) summer, most reduced (enhanced) precipitation occurs over continental convective regions, while most enhanced (reduced) precipitation occurs over oceanic convection zones. This land–sea asymmetry of tropical precipitation is particularly clear in austral summer. During the mid-Holocene, the solar forcing presents both spatial and seasonal asymmetric patterns. While the boreal summer insolation is stronger at high latitudes of the Northern Hemisphere in the mid-Holocene than at present, the austral summer insolation is weaker with a more spatially symmetric distribution about the equator. Because of the slow response time of the ocean to forcing, the direct insolation forcing of the current season is cancelled by the ocean memory of an earlier insolation forcing, which in the case of the mid-Holocene is opposite to the current season insolation forcing. As a result, tropical sea surface temperature variation, as well as the tropical atmospheric temperature and moisture changes, is small, which gives rise to a different precipitation response from under the condition of stronger atmospheric temperature and moisture changes, such as in the case of postindustrial global warming induced by an increased concentration of atmospheric greenhouse gases. Thus, the cancellation between the direct and memory effects of the seasonally asymmetric insolation forcing leaves the net energy into the atmosphere to be responsible for the land–sea asymmetry of tropical precipitation changes.

Corresponding author address: Chia Chou, Research Center for Environmental Changes, Academia Sinica, P.O. Box 1-48, Nankang, Taipei 11529, Taiwan. Email: chiachou@rcec.sinica.edu.tw

Save
  • An, Z. S., S. C. Porter, J. E. Kutzbach, X. H. Wu, S. M. Wang, X. D. Liu, X. Q. Li, and W. J. Zhou, 2000: Asynchronous Holocene optimum of the East Asian monsoon. Quat. Sci. Rev., 19 , 743762.

    • Search Google Scholar
    • Export Citation
  • Baker, P. A., and Coauthors, 2001a: The history of South American tropical precipitation for the past 25,000 years. Science, 291 , 640643.

    • Search Google Scholar
    • Export Citation
  • Baker, P. A., C. A. Rigsby, G. O. Seltzer, S. C. Fritz, T. K. Lowenstein, N. P. Bacher, and C. Veliz, 2001b: Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature, 409 , 698701.

    • Search Google Scholar
    • Export Citation
  • Berger, A. L., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35 , 23622367.

  • Betts, A. K., and M. J. Miller, 1993: The Betts–Miller scheme. The Representation of Cumulus Convection in Numerical Models. Meteor. Monogr., No. 46, Amer. Meteor. Soc., 107–121.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., O. Marti, S. Joussaume, and Y. Leclainche, 2000: Ocean feedback in response to 6 kyr BP insolation. J. Climate, 13 , 15371553.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., M-F. Loutre, B. Dong, S. Joussaume, and P. Valdes, and PMIP participating groups, 2002: How the simulated change in monsoon at 6 ka BP is related to the simulation of the modern climate: Results from the Paleoclimate Modeling Intercomparison Project. Climate Dyn., 19 , 107121.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3 , 261277.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., C. Marzin, L. Grégoire, E. Mosquet, and O. Marti, 2008: Monsoon response to changes in earth’s orbital parameters: Comparisons between simulations of the Eemian and of the Holocene. Climate Past, 4 , 281294.

    • Search Google Scholar
    • Export Citation
  • Broström, A., M. Coe, S. P. Harrison, R. Gallimore, J. E. Kutzbach, J. Foley, I. C. Prentice, and P. Behling, 1998: Land surface feedbacks and palaeomonsoons in northern Africa. Geophys. Res. Lett., 25 , 36153618.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15 , 26162631.

    • Search Google Scholar
    • Export Citation
  • Chou, C., 2003: Land-sea heating contrast in an idealized Asian summer monsoon. Climate Dyn., 21 , 1125.

  • Chou, C., and J. D. Neelin, 1996: Linearization of a longwave radiation scheme for intermediate tropical atmospheric models. J. Geophys. Res., 101 , 1512915145.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 1999: Cirrus detrainment-temperature feedback. Geophys. Res. Lett., 26 , 12951298.

  • Chou, C., and J. D. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Climate, 16 , 406425.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17 , 26882701.

  • Chou, C., J. D. Neelin, and H. Su, 2001: Ocean-atmosphere-land feedbacks in an idealized monsoon. Quart. J. Roy. Meteor. Soc., 127 , 18691891.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C-A. Chen, and J-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22 , 19822005.

    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., W. F. Staylor, S. K. Gupta, N. A. Ritchey, and A. C. Wilber, 1992: Seasonal variation of surface radiation budget derived from International Satellite Cloud Climatology Project C1 data. J. Geophys. Res., 97 , 1574115760.

    • Search Google Scholar
    • Export Citation
  • Fritz, S. C., and Coauthors, 2004: Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quat. Res., 61 , 95104.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50 , 20082025.

  • Garcin, Y., D. Williamson, M. Taieb, A. Vincens, P-E. Mathé, and A. Majule, 2006: Centennial to millennial changes in maar-lake deposition during the last 45,000 years in tropical Southern Africa (Lake Masoko, Tanzania). Palaeogeogr. Palaeoclimatol. Palaeoecol., 239 , 334354.

    • Search Google Scholar
    • Export Citation
  • Gasse, F., 2000: Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev., 19 , 189211.

  • Harshvardhan, R. Davies, D. A. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92 , 10091016.

    • Search Google Scholar
    • Export Citation
  • Hewitt, C. D., and J. F. B. Mitchell, 1998: A fully coupled GCM simulation of the climate of the mid-Holocene. Geophys. Res. Lett., 25 , 361364.

    • Search Google Scholar
    • Export Citation
  • Jolly, D., S. P. Harrison, B. Damnati, and R. Bonnefille, 1998: Simulated climate and biomes of Africa during the late quaternary: Comparison with pollen and lake status data. Quat. Sci. Rev., 17 , 629657.

    • Search Google Scholar
    • Export Citation
  • Joussaume, S., and P. Braconnot, 1997: Sensitivity of paleoclimate simulation results to season definitions. J. Geophys. Res., 102 , 19431956.

    • Search Google Scholar
    • Export Citation
  • Joussaume, S., and Coauthors, 1999: Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys. Res. Lett., 26 , 859862.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1981: Monsoon climate of the early Holocene: Climate experiment with the earth’s orbital parameters for 9000 years ago. Science, 214 , 5961.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1988: Climatic changes of the last 18,000 years: Observations and model simulations. Science, 241 , 10431052.

  • Kutzbach, J. E., and B. L. Otto-Bliesner, 1982: The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model. J. Atmos. Sci., 39 , 11771188.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and Z. Liu, 1997: Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science, 278 , 440443.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., G. Bonan, J. Foley, and S. P. Harrison, 1996: Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 384 , 623626.

    • Search Google Scholar
    • Export Citation
  • Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land sea thermal contrast. J. Climate, 9 , 358375.

    • Search Google Scholar
    • Export Citation
  • Liew, P. M., C. Y. Lee, and C. M. Kuo, 2006: Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan. Earth Planet. Sci. Lett., 250 , 596605.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., B. L. Otto-Bliesner, J. E. Kutzbach, L. Li, and C. Shields, 2003: Coupled climate simulation of the evolution of global monsoons in the Holocene. J. Climate, 16 , 24722490.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. P. Harrison, J. E. Kutzbach, and B. L. Otto-Bliesner, 2004: Global monsoons in the mid-Holocene and oceanic feedback. Climate Dyn., 22 , 157182.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and J-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51 , 18761894.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57 , 17411766.

  • Ohgaito, R., and A. Abe-Ouchi, 2007: The role of ocean thermodynamics and dynamics in Asian summer monsoon changes during the mid-Holocene. Climate Dyn., 29 , 3950.

    • Search Google Scholar
    • Export Citation
  • Qin, B. Q., S. P. Harrison, and J. E. Kutzbach, 1998: Evaluation of modelled regional water balance using lake status data: A comparison of 6 ka simulations with the NCAR CCM. Quat. Sci. Rev., 17 , 535548.

    • Search Google Scholar
    • Export Citation
  • Raynaud, D., J. Jouzel, J. M. Barnola, J. Chappellaz, R. J. Delmas, and C. Lorius, 1993: The ice record of greenhouse gases. Science, 259 , 926934.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., J. J. Duan, J. C. McWilliams, M. Munnich, and J. D. Neelin, 2002: Entrainment, Rayleigh friction, and boundary layer winds over the tropical Pacific. J. Climate, 15 , 3044.

    • Search Google Scholar
    • Export Citation
  • Su, H., and J. D. Neelin, 2005: Dynamical mechanisms for African monsoon changes during the mid-Holocene. J. Geophys. Res., 110 , D19105. doi:10.1029/2005JD005806.

    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and J. E. Meyerson, 2003: Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J. Climate, 16 , 12831301.

    • Search Google Scholar
    • Export Citation
  • Tan, P-H., C. Chou, and J-Y. Tu, 2008: Mechanisms of global warming impacts on robustness of tropical precipitation asymmetry. J. Climate, 21 , 55855602.

    • Search Google Scholar
    • Export Citation
  • Texier, D., and Coauthors, 1997: Quantifying the role of biosphere–atmosphere feedbacks in climate change: Coupled model simulation for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Climate Dyn., 13 , 865882.

    • Search Google Scholar
    • Export Citation
  • Thevenon, F., D. Williamson, and M. Taieb, 2002: A 22 kyr BP sedimentological record of Lake Rukwa (8°S, SW Tanzania): Environmental, chronostratigraphic and climatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 187 , 285294.

    • Search Google Scholar
    • Export Citation
  • Toledo, F. A. L., K. B. Costa, and M. A. G. Pivel, 2007: Salinity changes in the western tropical South Atlantic during the last 30 kyr. Global Planet. Change, 57 , 383395.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., W. R. Peltier, and N. A. McFarlane, 1998: Simulations of mid-Holocene climate using an atmospheric general circulation model. J. Climate, 11 , 26072627.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: The structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103 , 1424114259.

    • Search Google Scholar
    • Export Citation
  • Xiao, J. L., Q. H. Xu, T. Nakamura, X. L. Yang, W. D. Liang, and Y. Inouchi, 2004: Holocene vegetation variation in the Daihai Lake region of north-central China: A direct indication of the Asian monsoon climatic history. Quat. Sci. Rev., 23 , 16691679.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., and J. D. Neelin, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part II: Numerical results. J. Atmos. Sci., 51 , 18951914.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55 , 13541372.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, and C. Chou, 2000: A quasi-equilibrium tropical circulation model—Implementation and simulation. J. Atmos. Sci., 57 , 17671796.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and Coauthors, 2005: A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Climate Dyn., 25 , 777800.

    • Search Google Scholar
    • Export Citation
  • Zhou, W. J., X. F. Yu, A. J. T. Jull, G. Burr, J. Y. Xiao, X. F. Lu, and F. Xian, 2004: High-resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18,000 years. Quat. Res., 62 , 3948.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., S. Xie, P. A. Meyers, and Y. Zheng, 2005: Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Org. Geochem., 36 , 12721284.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 81 26
PDF Downloads 149 55 6