Modulation of the Global Atmospheric Circulation by Combined Activity in the Madden–Julian Oscillation and the El Niño–Southern Oscillation during Boreal Winter

Paul E. Roundy University at Albany, State University of New York, Albany, New York

Search for other papers by Paul E. Roundy in
Current site
Google Scholar
PubMed
Close
,
Kyle MacRitchie University at Albany, State University of New York, Albany, New York

Search for other papers by Kyle MacRitchie in
Current site
Google Scholar
PubMed
Close
,
Jonas Asuma University at Albany, State University of New York, Albany, New York

Search for other papers by Jonas Asuma in
Current site
Google Scholar
PubMed
Close
, and
Timothy Melino University at Albany, State University of New York, Albany, New York

Search for other papers by Timothy Melino in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Composite global patterns associated with the El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) are frequently applied to help make predictions of weather around the globe at lead times beyond a few days. However, ENSO modulates the background states through which the MJO and its global response patterns propagate. This paper explores the possibility that nonlinear variations confound the combined use of composites based on the MJO and ENSO separately. Results indicate that when both modes are active at the same time, the associated patterns in the global flow are poorly represented by simple linear combinations of composites based on the MJO and ENSO individually. Composites calculated by averaging data over periods when both modes are present at the same time more effectively describe the associated weather patterns. Results reveal that the high-latitude response to the MJO varies with ENSO over all longitudes, but especially across the North Pacific Rim, North America, and the North Atlantic. Further analysis demonstrates that the MJO influence on indexes of the North Atlantic Oscillation is greatest during La Niña conditions or during periods of rapid adjustment in the phase of ENSO.

Corresponding author address: Paul E. Roundy, Department of Atmospheric and Environmental Sciences, University at Albany, DAES-ES351, Albany, NY 12222. Email: roundy@atmos.albany.edu

Abstract

Composite global patterns associated with the El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) are frequently applied to help make predictions of weather around the globe at lead times beyond a few days. However, ENSO modulates the background states through which the MJO and its global response patterns propagate. This paper explores the possibility that nonlinear variations confound the combined use of composites based on the MJO and ENSO separately. Results indicate that when both modes are active at the same time, the associated patterns in the global flow are poorly represented by simple linear combinations of composites based on the MJO and ENSO individually. Composites calculated by averaging data over periods when both modes are present at the same time more effectively describe the associated weather patterns. Results reveal that the high-latitude response to the MJO varies with ENSO over all longitudes, but especially across the North Pacific Rim, North America, and the North Atlantic. Further analysis demonstrates that the MJO influence on indexes of the North Atlantic Oscillation is greatest during La Niña conditions or during periods of rapid adjustment in the phase of ENSO.

Corresponding author address: Paul E. Roundy, Department of Atmospheric and Environmental Sciences, University at Albany, DAES-ES351, Albany, NY 12222. Email: roundy@atmos.albany.edu

Save
  • Bladé, I., and D. L. Hartmann, 1995: The linear and nonlinear extratropical response to tropical intraseasonal heating. J. Atmos. Sci., 52 , 44484471.

    • Search Google Scholar
    • Export Citation
  • Brankovic, C., T. Palmer, and L. Ferranti, 1994: Predictability of seasonal atmospheric variations. J. Climate, 7 , 217237.

  • Branstator, G. W., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15 , 18931910.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature, 455 , 523527.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. Shukla, 1981: Predictability of monsoons. Monsoon Dynamics, J. Lighthill and R. Pearce, Eds., Cambridge University Press, 99–130.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and K. Klinker, 1990: Tropical–extratropical interaction associated with the 30-60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47 , 21772199.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., B. Liebmann, M. Newman, J. D. Glick, and J. E. Schemm, 2000: Medium-range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128 , 6986.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13 , 793820.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and G-Y. Yang, 2000: The equatorial response to higher latitude forcing. J. Atmos. Sci., 57 , 11971213.

  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52 , 307319.

  • Jones, C., and J-K. E. Schemm, 2000: The influence of intraseasonal variations on medium-range weather forecasts over South America. Mon. Wea. Rev., 128 , 486494.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004a: Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17 , 45754589.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004b: The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132 , 14621471.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47 , RG2003. doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22 , 364380.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden-Julian oscillation during northern winter. Quart. J. Roy. Meteor. Soc., 130 , 19912011.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Intraseasonal modulation of summer precipitation over North America. Mon. Wea. Rev., 128 , 14901505.

  • Mo, K. C., and R. W. Higgins, 1998: Tropical influences on California precipitation. J. Climate, 11 , 412430.

  • Nogues-Paegle, J., L. A. Byerle, and K. C. Mo, 2000: Intraseasonal modulation of South American summer precipitation. Mon. Wea. Rev., 128 , 837850.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20 , 26592674.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65 , 13421359.

  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61 , 21052132.

  • Roundy, P. E., and J. R. Kravitz, 2009: The association of the evolution of intraseasonal oscillations with ENSO phase. J. Climate, 22 , 381395.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and C. Schreck, 2009: A combined wave-number–frequency and time-extended EOF approach for tracking the progress of modes of large-scale organized tropical convection. Quart. J. Roy. Meteor. Soc., 135 , 161173.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., C. J. Schreck, and M. A. Janiga, 2009: Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Wea. Rev., 137 , 469478.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and P. D. Sardeshmukh, 1994: The atmospheric angular momentum cycle associated with a Madden–Julian oscillation. J. Atmos. Sci., 51 , 31943208.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and E. Berry, 2007: A synoptic–dynamic model of subseasonal atmospheric variability. Mon. Wea. Rev., 135 , 449474.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and E. Berry, 2009: The tropical Madden–Julian oscillation and the global wind oscillation. Mon. Wea. Rev., 137 , 16011614.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. N. Kiladis, and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54 , 14451461.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Academic Press, 627 pp.

  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1069 251 17
PDF Downloads 517 123 12