• AchutaRao, K., and K. R. Sperber, 2002: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • AchutaRao, K., and K. R. Sperber, 2006: ENSO simulation in coupled ocean–atmosphere models: Are the current models better? Climate Dyn., 27 , 115.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian Monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20 , 10711092.

    • Search Google Scholar
    • Export Citation
  • Ashrit, R. G., K. Rupa Kumar, and K. Krishna Kumar, 2001: ENSO–monsoon relationship in a greenhouse warming scenario. Geophys. Res. Lett., 28 , 17271730.

    • Search Google Scholar
    • Export Citation
  • Ashrit, R. G., H. Douville, and K. Rupa Kumar, 2003: Response of the Indian monsoon and ENSO–monsoon teleconnection to enhanced greenhouse effect in the CNRM coupled model. J. Meteor. Soc. Japan, 81 , 799803.

    • Search Google Scholar
    • Export Citation
  • Ashrit, R. G., A. Kitoh, and S. Yukimoto, 2005: Transient response of ENSO–monsoon teleconnection in MRI-CGCM2.2 climate change simulations. J. Meteor. Soc. Japan, 83 , 273291.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19 , 35183543.

  • Blanford, H. F., 1886: The rainfall of India. Indian Meteor. Mem., 3 , 1269.

  • Chan, S. C., and J. L. Evans, 2002: Comparison of the structure of the ITCZ in the west Pacific during the boreal summers of 1989–93 using AMIP simulations and ECMWF reanalysis. J. Climate, 15 , 35493568.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., C. Y. Li, and Y. J. Liu, 2004: Overview of the South China Seas monsoon experiment. Adv. Atmos. Sci., 21 , 343360.

  • Douville, H., and Coauthors, 2000: Impact of CO2 doubling on the Asian summer monsoon: Robust versus model-dependent responses. J. Meteor. Soc. Japan, 78 , 421439.

    • Search Google Scholar
    • Export Citation
  • Fan, F., M. E. Mann, and C. M. Ammann, 2009: Understanding changes in the Asian summer monsoon over the past millennium: Insights from a long-term model simulation. J. Climate, 22 , 17361748.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., N. Schneider, and T. Barnett, 2001: Low-frequency modulation of the ENSO–Indian monsoon rainfall relationship: Signal or noise? J. Climate, 14 , 24862492.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Krishnamurthy, and H. Annamalai, 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125 , 611633.

    • Search Google Scholar
    • Export Citation
  • Grove, R. H., 1998: Global impact of the 1789–93 El Niño. Nature, 393 , 318319.

  • Halley, E., 1686: An historical account for the trade winds, and monsoons, observable in the seas between the Tropics, with an attempt to assign the physical cause of the said winds. Philos. Trans. Roy. Soc. London, 16 , 153168.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Hu, Z. Z., M. Latif, E. Roeckner, and L. Bengtsson, 2000: Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys. Res. Lett., 27 , 26812684.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and K. E. Trenberth, 1998: Difficulties in obtaining reliable temperature trends: Reconciling the surface and satellite microwave sounding unit records. J. Climate, 11 , 945967.

    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., and P. L. Raman, 1966: Existence of low level westerly jet stream over peninsular India during July. Ind. J. Meteor. Geophys., 17 , 407410.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., and S. Nigam, 2006: ENSO evolution and teleconnection in IPCC’s twentieth-century climate simulation: Realistic representation? J. Climate, 19 , 43604377.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kitoh, A., S. Yukimoto, A. Noda, and T. Motoi, 1997: Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2. J. Meteor. Soc. Japan, 75 , 10191031.

    • Search Google Scholar
    • Export Citation
  • Koteswaram, P., 1958: Easterly jet stream in the tropic. Tellus, 10 , 4357.

  • Kripalani, R. H., and A. Kulkarni, 1997: Climatic impact of El Niño/La Niña on the Indian monsoon: A new perspective. Weather, 52 , 3946.

    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., A. Kulkarni, and S. S. Sabade, 2001: El Niño–Southern Oscillation, Eurasian snow cover and the Indian monsoon rainfall. Proc. Ind. Natl. Sci. Acad., 67A , 361368.

    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and Coauthors, 2003: Indian monsoon variability in a global warming scenario. Nat. Hazards, 29 , 189206.

  • Krishna Kumar, K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284 , 21562159.

    • Search Google Scholar
    • Export Citation
  • Krishna Kumar, K., B. Rajagopalan, M. Hoerling, G. Bates, and M. A. Cane, 2006: Unraveling the mystery of monsoon failure during El Niño. Science, 314 , 115119.

    • Search Google Scholar
    • Export Citation
  • Latif, M., A. Sterl, M. Assenbaum, M. M. Junge, and E. Maier-Reimer, 1994: Climate variability in a coupled GCM. Part II: The India Ocean and monsoon. J. Climate, 7 , 14491462.

    • Search Google Scholar
    • Export Citation
  • May, W., 2002: Simulated changes of the Indian summer monsoon under enhanced greenhouse gas concentrations in a global time-slice experiment. Geophys. Res. Lett., 29 , 1118. doi:10.1029/2001GL013808.

    • Search Google Scholar
    • Export Citation
  • May, W., 2004: Potential future changes in the Indian summer monsoon due to greenhouse warming: Analysis of mechanisms in a global time-slice experiment. Climate Dyn., 22 , 389414.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1993: South Asian summer monsoon variability in a model with doubled atmospheric carbon dioxide concentration. Science, 260 , 11011104.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2003: Mechanisms for projected future changes in South Asian monsoon precipitation. Climate Dyn., 21 , 659675.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, D. J. Erickson III, B. P. Briegleb, and P. J. Jaumann, 1996: Climate change from increased CO2 and direct and indirect effects of sulfate aerosols. Geophys. Res. Lett., 23 , 37553758.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., and K-M. Lau, 1997: Influence of solar irradiance on the Indian monsoon–ENSO relationship at decadal–multidecadal time scales. Geophys. Res. Lett., 24 , 159162.

    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297 , 22502253.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., and T. C. Johns, 1997: On modification of global warming by sulfate aerosols. J. Climate, 10 , 245267.

  • Nigam, S., 1994: On the dynamical basis for the Asian summer monsoon rainfall–El Niño relationship. J. Climate, 7 , 17501770.

  • Parthasarathy, B., R. R. Kumar, and D. R. Kothawale, 1992: Indian summer monsoon rainfall indices, 1871–1990. Meteor. Mag., 121 , 174186.

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., A. A. Munot, and D. R. Kothawale, 1994: All-India monthly and seasonal rainfall series: 1871–1993. Theor. Appl. Climatol., 49 , 217224.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1 , 221227.

  • Ramanathan, V., and Coauthors, 2005: Atmospheric brown clouds: Impacts on South Asian climate the hydrological cycle. Proc. Natl. Acad. Sci. USA, 102 , 53265333.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between eastern equatorial Pacific sea surface temperature and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111 , 517528.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Sciences Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Springer, 787 pp.

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive system. Quart. J. Roy. Meteor. Soc., 118 , 877926.

  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 , 1445114510.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 3 3 3

Observed and Modeled Changes in the South Asian Summer Monsoon over the Historical Period

View More View Less
  • 1 Department of Meteorology, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania
Restricted access

Abstract

The behavior in the South Asian summer monsoon (SASM) was analyzed in Coupled Model Intercomparison Project (CMIP3) multimodel historical (20c3m) simulations and in modern observational and reanalysis data. The CMIP3 simulations capture the observed trend of weakening of the SASM circulation over the past half century, but are unable to reproduce the magnitude of the observed weakening trend. While the observations indicate a slight decrease in SASM-related precipitation, the CMIP3 simulations indicate on average a very slight increase, albeit with very large intermodel and intramodel variabilities. The CMIP3 simulations reproduce the observed negative relationship between the SASM and ENSO. The observed weakening trend in this relationship in recent decades, which has been attributed in some studies to anthropogenic forcing, appears to be well within the variability of the CMIP3 multimodel ensemble. For some models, distinct realizations indicate both strengthening and weakening trends that are larger in magnitude than the observed weakening trend.

Corresponding author address: Fangxing Fan, Department of Meteorology, The Pennsylvania State University, 408 Walker Building, University Park, PA 16802. Email: fxf908@psu.edu

Abstract

The behavior in the South Asian summer monsoon (SASM) was analyzed in Coupled Model Intercomparison Project (CMIP3) multimodel historical (20c3m) simulations and in modern observational and reanalysis data. The CMIP3 simulations capture the observed trend of weakening of the SASM circulation over the past half century, but are unable to reproduce the magnitude of the observed weakening trend. While the observations indicate a slight decrease in SASM-related precipitation, the CMIP3 simulations indicate on average a very slight increase, albeit with very large intermodel and intramodel variabilities. The CMIP3 simulations reproduce the observed negative relationship between the SASM and ENSO. The observed weakening trend in this relationship in recent decades, which has been attributed in some studies to anthropogenic forcing, appears to be well within the variability of the CMIP3 multimodel ensemble. For some models, distinct realizations indicate both strengthening and weakening trends that are larger in magnitude than the observed weakening trend.

Corresponding author address: Fangxing Fan, Department of Meteorology, The Pennsylvania State University, 408 Walker Building, University Park, PA 16802. Email: fxf908@psu.edu

Save