• Banks, H., R. Wood, and J. Gregory, 2002: Changes to Indian Ocean Subantarctic Mode Water in a Coupled Climate Model as CO2 forcing increases. J. Phys. Oceanogr., 32 , 28162827.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates. Ocean Modell., 44 , 5588.

  • Bleck, R., and L. T. Smith, 1990: A wind-driven isopycnic coordinate model of the North and Equatorial Atlantic Ocean. 1: Model development and supporting experiments. J. Geophys. Res., 95C , 32733285.

    • Search Google Scholar
    • Export Citation
  • Cattle, H., and J. Crossley, 1995: Modelling Arctic climate change. Philos. Trans. Roy. Soc. London, 352A , 201213.

  • Chassignet, E. P., L. T. Smith, R. Bleck, and F. O. Bryan, 1996: A model comparison: Numerical simulations of the North and equatorial Atlantic Oceanic circulation in depth and isopycnic coordinates. J. Phys. Oceanogr., 26 , 18491867.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., 2005: RRS Discovery Cruise 279, 04 Apr-10 May 2004: A transatlantic hydrographic section at 24.5°N. Cruise Rep. 54, 150 pp.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108C , 8084. doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Cuny, J., P. B. Rhines, and R. Kwok, 2005: Davis Strait volume, freshwater and heat fluxes. Deep-Sea Res., 52 , 519542.

  • Danabasoglu, G., and J. C. McWilliams, 1995: Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Climate, 8 , 29672987.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing form hydrographic data. Nature, 408 , 453458.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1989: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gloersen, P., and Coauthors, 1993: Arctic and Antarctic sea ice, 1978-1987: Satellite passive-microwave observations and analysis. NASA Special Publ. 511, 290 pp.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R. W., and A. Adcroft, 2009: Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Modell., 29 .doi:10.1016/j.ocemod.2009.02.008.

    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the Hybrid Coordinate Ocean Model (HYCOM). Ocean Modell., 7 , 285322.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Eds. 1996: Climate Change 1995. The Science of Climate Change. Cambridge University Press, 572 pp.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu, Eds. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 944 pp.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., A. J. Wallcraft, W. J. Schmitz, P. J. Hogan, and E. J. Metzger, 1996: Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean. J. Geophys. Res., 101C , 941976.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2006: The New Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19 , 13271353.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. J. Shay, J. M. Bane, and D. R. Watts, 1995: Gulf Stream structure, transport, and recirculation near 68° W. J. Geophys. Res., 100C , 817838.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1998: The Southampton Oceanography Centre (SOC) Ocean—Atmosphere Heat, Momentum and Freshwater Flux Atlas. Southampton Oceanography Centre Rep. 6, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Marsh, R., M. J. Roberts, R. A. Wood, and A. L. New, 1996: An intercomparison of a Bryan–Cox type ocean model and an isopycnic ocean model. Part II: The subtropical gyre and meridional heat transport. J. Phys. Oceanogr., 26 , 15281551.

    • Search Google Scholar
    • Export Citation
  • Megann, A. P., and A. L. New, 1995: Meteorological Office/NERC agreement on “ocean modelling and parameterisation”: Isopycnic Development. Rep. 2: Intercomparison of quasi-global isopycnic and Cox models. Met Office, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Megann, A. P., and A. L. New, 2001: The effects of resolution and viscosity in an isopycnal-coordinate model of the equatorial Pacific. J. Phys. Oceanogr., 31 , 19932018.

    • Search Google Scholar
    • Export Citation
  • New, A. L., and R. Bleck, 1995: An isopycnic model study of the North Atlantic. Part II: Interdecadal variability of the subtropical gyre. J. Phys. Oceanogr., 25 , 27002714.

    • Search Google Scholar
    • Export Citation
  • New, A. L., R. Bleck, Y. Jia, R. Marsh, M. Huddleston, and S. Barnard, 1995: An isopycnic model study of the North Atlantic. Part I: Model experiment. J. Phys. Oceanogr., 25 , 26672699.

    • Search Google Scholar
    • Export Citation
  • Qu, T., H. Mitsudera, and B. Qiu, 2001: A climatological view of the Kuroshio/Oyashio system east of Japan. J. Phys. Oceanogr., 31 , 25752589.

    • Search Google Scholar
    • Export Citation
  • Roach, A. T., K. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, 1995: Direct measurements of transport and water properties through the Bering Strait. J. Geophys. Res., 100C , 1844318457.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., R. Marsh, A. L. New, and R. A. Wood, 1996: An intercomparison of a Bryan–Cox type ocean model and an isopycnic ocean model. Part I: The subpolar gyre and high-latitude processes. J. Phys. Oceanogr., 26 , 14951527.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2004: Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J. Climate, 17 , 320.

    • Search Google Scholar
    • Export Citation
  • Sandwell, D. T., and W. H. F. Smith, 1997: Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J. Geophys. Res., 102B , 1003910050.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. Brzezinski, and J. P. Dunne, 2004: High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427 , 5660.

    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., S. A. Cunningham, B. A. de Cuevas, and A. C. Coward, 2008: Comments on “Decadal changes in the North Atlantic and Pacific meridional overturning circulation and heat flux”. J. Phys. Oceanogr., 38 , 21042107.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L. C., and Coauthors, 2009: U.K. HiGEM: The New U.K. High-Resolution Global Environment Model—Model description and basic evaluation. J. Climate, 22 , 18611896.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and I. V. Kamenkovich, 2007: Simulation of Subantarctic Mode and Antarctic Intermediate Waters in climate models. J. Climate, 20 , 50615080.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. D., D. Anderson, M. Davey, P. Delecleuse, A. Kattenberg, Y. Kitamura, M. Latif, and T. Yamagata, 1993: Intercomparison of tropical Pacific Ocean GCMs. World Climate Research Programme 79, WMO/TD-545, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and R. Bleck, 2001a: Thermohaline circulation studies with an isopycnic coordinate ocean model. J. Phys. Oceanogr., 31 , 27612782.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and R. Bleck, 2001b: Atlantic thermohaline circulation and its response to increasing CO2 in a coupled atmosphere-ocean model. Geophys. Res. Lett., 28 , 42234226.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and R. Bleck, 2005: Multi-century simulations with the coupled GISS–HYCOM climate model: Control experiments. Climate Dyn., 26 , 407428.

    • Search Google Scholar
    • Export Citation
  • Sun, S., R. Bleck, C. Rooth, J. Dukowicz, E. Chassignet, and P. Killworth, 1999: Inclusion of thermobaricity in isopycnic-coordinate ocean models. J. Phys. Oceanogr., 29 , 27192729.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1996: Antarctic Intermediate Water in the South Atlantic. The South Atlantic: Present and Past Circulation, G. Wefer et al., Eds., Springer Verlag, 219–238.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Valcke, S., L. Terray, and A. Piacentini, 2000: OASIS 2.4 user’s guide. European Centre for Research and Advanced Training in Scientific Computing, TR/CGMC/00-10, 68 pp.

  • Willebrand, J., and Coauthors, 2001: Circulation characteristics in three eddy-permitting models of the North Atlantic. Prog. Oceanogr., 48 , 123161.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 1 1 1

The Sensitivity of a Coupled Climate Model to Its Ocean Component

View More View Less
  • 1 National Oceanography Centre, Southampton, United Kingdom
Restricted access

Abstract

The control climates of two coupled climate models are intercompared. The first is the third climate configuration of the Met Office Unified Model (HadCM3), while the second, the Coupled Hadley–Isopycnic Model Experiment (CHIME), is identical to the first except for the replacement of its ocean component by the Hybrid-Coordinate Ocean Model (HYCOM). Both models possess realistic and similar ocean heat transports and overturning circulation. However, substantial differences in the vertical structure of the two ocean components are observed, some of which are directly attributed to their different vertical coordinate systems. In particular, the sea surface temperature (SST) in CHIME is biased warm almost everywhere, particularly in the North Atlantic subpolar gyre, in contrast to HadCM3, which is biased cold except in the Southern Ocean. Whereas the HadCM3 ocean warms from just below the surface down to 1000-m depth, a similar warming in CHIME is more pronounced but shallower and confined to the upper 400 m, with cooling below this. This is particularly apparent in the subtropical thermoclines, which become more diffuse in HadCM3, but sharper in CHIME. This is interpreted as resulting from a more rigorously controlled diapycnal mixing in the interior isopycnic ocean in CHIME. Lower interior mixing is also apparent in the better representation and maintenance of key water masses in CHIME, such as Subantarctic Mode Water, Antarctic Intermediate Water, and North Atlantic Deep Water. Finally, the North Pacific SST cold error in HadCM3 is absent in CHIME, and may be related to a difference in the separation position of the Kuroshio. Disadvantages of CHIME include a nonconservation of heat equivalent to 0.5 W m−2 globally, and a warming and salinification of the northwestern Atlantic.

Corresponding author address: Dr. Alex Megann, National Oceanography Centre, Southampton, Empress Dock, Southampton SO14 3ZH, United Kingdom. Email: apm@noc.soton.ac.uk

Abstract

The control climates of two coupled climate models are intercompared. The first is the third climate configuration of the Met Office Unified Model (HadCM3), while the second, the Coupled Hadley–Isopycnic Model Experiment (CHIME), is identical to the first except for the replacement of its ocean component by the Hybrid-Coordinate Ocean Model (HYCOM). Both models possess realistic and similar ocean heat transports and overturning circulation. However, substantial differences in the vertical structure of the two ocean components are observed, some of which are directly attributed to their different vertical coordinate systems. In particular, the sea surface temperature (SST) in CHIME is biased warm almost everywhere, particularly in the North Atlantic subpolar gyre, in contrast to HadCM3, which is biased cold except in the Southern Ocean. Whereas the HadCM3 ocean warms from just below the surface down to 1000-m depth, a similar warming in CHIME is more pronounced but shallower and confined to the upper 400 m, with cooling below this. This is particularly apparent in the subtropical thermoclines, which become more diffuse in HadCM3, but sharper in CHIME. This is interpreted as resulting from a more rigorously controlled diapycnal mixing in the interior isopycnic ocean in CHIME. Lower interior mixing is also apparent in the better representation and maintenance of key water masses in CHIME, such as Subantarctic Mode Water, Antarctic Intermediate Water, and North Atlantic Deep Water. Finally, the North Pacific SST cold error in HadCM3 is absent in CHIME, and may be related to a difference in the separation position of the Kuroshio. Disadvantages of CHIME include a nonconservation of heat equivalent to 0.5 W m−2 globally, and a warming and salinification of the northwestern Atlantic.

Corresponding author address: Dr. Alex Megann, National Oceanography Centre, Southampton, Empress Dock, Southampton SO14 3ZH, United Kingdom. Email: apm@noc.soton.ac.uk

Save