• Baigorria, G. A., J. W. Hanse, N. Ward, J. W. Jones, and J. J. O’Brien, 2008: Assessing predictability of cotton yields in the Southeastern United States based on regional atmospheric circulation and surface temperatures. J. Appl. Meteor. Climatol., 47 , 7691.

    • Search Google Scholar
    • Export Citation
  • Bárdossy, A., and J. Van Mierlo, 2000: Regional precipitation and temperature scenarios for climate change. Hydrol. Sci. J., 45 , 559575.

    • Search Google Scholar
    • Export Citation
  • Bates, B., S. Charles, and J. Hughes, 1998: Stochastic downscaling of numerical climate model simulations. Environ. Model. Software, 13 , (3–4). 325331.

    • Search Google Scholar
    • Export Citation
  • Bellone, E., J. Hughes, and P. Guttorp, 2000: A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Climate Res., 15 , 112.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2002: Empirically downscaled temperature scenarios for Northern Europe based on a multi-model ensemble. Climate Res., 21 , 105125.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2005: Climate change scenarios for northern Europe from multi-model IPCC AR4 climate simulations. Geophys. Res. Lett., 32 , L17704. doi:10.1029/2005GL023401.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2007: Novel methods for inferring future changes in extreme rainfall over Northern Europe. Climate Res., 34 , 195210.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., D. Chen, and I. Hanssen-Bauer, 2008: Empirical-Statistical Downscaling. World Scientific Publishing Company, 228 pp.

  • Bogaert, P., and D. Fasbender, 2007: Bayesian data fusion in a spatial prediction context: A general formulation. Stochastic Environ. Res. Risk A, 21 , 695709.

    • Search Google Scholar
    • Export Citation
  • Data Access Integration, 2009: DAI data catalogue version 1.0. April 2009, Montreal, QC, Canada, 24 pp. [Available online at http://loki.qc.ec.gc.ca/DAI/doc/catalogue/DAI_Catalogue_January2010_En.pdf].

    • Search Google Scholar
    • Export Citation
  • Chilès, J-P., and P. Delfiner, 1999: Geostatistics: Modeling Spatial Uncertainty. John Wiley and Sons, Inc., 720 pp.

  • Coelho, C. A. S., S. Pezzulli, M. Balmaseda, F. J. Doblas-Reyes, and D. B. Stephenson, 2004: Forecast calibration and combination: A simple Bayesian approach for ENSO. J. Climate, 17 , 15041516.

    • Search Google Scholar
    • Export Citation
  • DAI Team, 2008: Sets of predictor variables derived from CGCM3 T47 and NCEP/NCAR reanalysis. Tech. Rep. 1.1, Montreal, QC, Canada, 15 pp.

    • Search Google Scholar
    • Export Citation
  • Flato, G., G. Boer, W. Lee, N. McFarlane, D. Ramsden, M. Reader, and A. Weaver, 2000: The Canadian center for climate modeling analysis global coupled model and its climate. Climate Dyn., 16 , 451467.

    • Search Google Scholar
    • Export Citation
  • Gachon, P., and Coauthors, 2005: A first evaluation of the strength and weaknesses of statistical downscaling methods for simulating extremes over various regions of Eastern Canada. Subcomponent, Climate Change Action Fund (CCAF), Environnement Canada, Montreal, QC, Canada, 209 pp.

    • Search Google Scholar
    • Export Citation
  • Gerardin, V., and D. McKenney, 2001: Une classification climatique du Québec à partir de modèles de distribution spatiale de données climatiques mensuelles: Vers une definition des bioclimats du Québec. Contribution du Service de la cartographie écologique 60, Ministère de l’Environment, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 2008: Kriging and semivariogram deconvolution in the presence of irregular geographical units. Math. Geol., 40 , 101128.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , (2–3). 147168.

    • Search Google Scholar
    • Export Citation
  • Grotch, S. L., and M. C. MacCracken, 1991: The use of general circulation models to predict regional climatic change. J. Climate, 4 , 286303.

    • Search Google Scholar
    • Export Citation
  • Hessami, M., P. Gachon, T. B. M. J. Ouarda, and A. St.-Hilaire, 2008: Automated regression-based statistical downscaling tool. Environ. Model. Software, 23 , 813834.

    • Search Google Scholar
    • Export Citation
  • Hughes, J., and P. Guttorp, 1994: Incorporating spatial dependence and atmospheric data in a model of precipitation. J. Appl. Meteor., 33 , 15031515.

    • Search Google Scholar
    • Export Citation
  • Hughes, J., P. Guttorp, and S. Charles, 1999: A non-homogeneous hidden Markov model for precipitation occurrence. J. Roy. Stat. Soc. C: Appl. Stat., 48 , 1530.

    • Search Google Scholar
    • Export Citation
  • Hundecha, Y., and A. Bárdossy, 2005: Trends in daily precipitation and temperature extremes across western Germany in the second half of the 20th century. Int. J. Climatol., 25 , 11891202.

    • Search Google Scholar
    • Export Citation
  • Huth, R., and J. Kyselý, 2000: Constructing site-specific climate change scenarios on a monthly scale. Theor. Appl. Climatol., 66 , (1–2). 1327.

    • Search Google Scholar
    • Export Citation
  • Jeong, D., A. St-Hilaire, T. Ouarda, and P. Gachon, 2010: Development of multisite statistical downscaling model and projection of future temperature extremes over Montréal, Canada. Proc. 44th Annual Canadian Meteorological and Oceanographic Society (CMOS) Congress, Ottawa, ON, Canada, CMOS, 3C14.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Lim, Y-K., D. W. Shin, S. Cocke, T. E. LaRow, J. T. Schoof, J. J. O’Brien, and E. P. Chassignet, 2007: Dynamically and statistically downscaled seasonal simulations of maximum surface air temperature over the southeastern United States. J. Geophys. Res., 112 , D24102. doi:10.1029/2007JD008764.

    • Search Google Scholar
    • Export Citation
  • Mendes, J. M., K. F. Turkman, and J. Corte-Real, 2006: A Bayesian hierarchical model for local precipitation by downscaling large-wscale atmospheric circulation patterns. Environmetrics, 17 , 721738.

    • Search Google Scholar
    • Export Citation
  • Michelangeli, P-A., M. Vrac, and H. Loukos, 2009: Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett., 36 , L11708. doi:10.1029/2009GL038401.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8 (23) 70557074.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., L. Mearns, D. Nychka, and R. Smith, 2004: Regional probabilities of precipitation change: A Bayesian analysis of multimodel simulations. Geophys. Res. Lett., 31 , L24213. doi:10.1029/2004GL021276.

    • Search Google Scholar
    • Export Citation
  • Vincent, L., X. Zhang, B. Bonsal, and W. Hogg, 2002: Homogenization of daily temperatures over Canada. J. Climate, 15 , 13221334.

  • von Storch, H., 1999: On the use of inflation in statistical downscaling. J. Climate, 12 , 35053506.

  • Vrac, M., and P. Naveau, 2007: Stochastic downscaling of precipitations: From dry events to heavy rainfalls. Water Resour. Res., 43 , W07402. doi:10.1029/2006WR005308.

    • Search Google Scholar
    • Export Citation
  • Vrac, M., M. Stein, and K. Hayhoe, 2007: Statistical downscaling of precipitations through nonhomogeneous stochastic weather typing. Climate Res., 34 , 169184.

    • Search Google Scholar
    • Export Citation
  • Wilby, R., H. Hassan, and K. Hanaki, 1998: Statistical downscaling of hydrometeorological variables using general circulation model output. J. Hydrol., 205 , 119.

    • Search Google Scholar
    • Export Citation
  • Wilby, R., C. Dawson, and E. Barrow, 2002: SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Software, 17 , 145157.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 3 3 3

Spatial Bayesian Model for Statistical Downscaling of AOGCM to Minimum and Maximum Daily Temperatures

View More View Less
  • 1 INRS-ETE, Quebec City, Quebec, Canada
Restricted access

Abstract

Atmosphere–ocean general circulation models (AOGCMs) are useful for assessing the state of the climate at large scales. Unfortunately, they are not tractable for the finer-scale applications (e.g., hydrometeorological variables). Downscaling methods allow the transfer of large-scale information to finer scales and they are thus relevant for the assessment of finer-scale variables. Among a wide range of downscaling methods, regression-based approaches are commonly used for downscaling AOGCM data because of their low computational requirements. However, downscaled variables are generally reproduced at gauged weather stations only. Results at the gauged stations can then be interpolated a posteriori at ungauged locations with kriging or other methods.

In this paper, a spatial Bayesian model is proposed for the downscaling of coarse-scale atmospheric data (i.e., either reanalysis or AOGCM) to minimum and maximum daily temperatures. This approach uses a Bayesian framework for mixing a prior distribution reflecting the monthly spatial dependence of the temperatures with the daily fluctuations induced by the atmospheric predictors. Local characteristics (i.e., altitude and latitude) are also taken into account in the mean of the prior distribution by using a geographical regression model. The posterior distribution thus reflects both monthly local patterns because of the prior and daily larger-scale fluctuations. Finally, the Bayesian approach also allows for the accounting of estimated parameter uncertainty, making it more stable to poor parameter fitting. The method is applied to the southern part of the province of Quebec, Canada. Results show that the downscaled distributions of the temperatures at gauged sites are in sufficient agreement with the validation dataset compared to a classical regression-based method. The proposed model has also the advantage of directly producing temperature maps.

Corresponding author address: Dominique Fasbender, INRS-ETE, 490 de la Couronne, Quebec QC G1K 9A9, Canada. Email: dominique.fasbender@ete.inrs.ca

Abstract

Atmosphere–ocean general circulation models (AOGCMs) are useful for assessing the state of the climate at large scales. Unfortunately, they are not tractable for the finer-scale applications (e.g., hydrometeorological variables). Downscaling methods allow the transfer of large-scale information to finer scales and they are thus relevant for the assessment of finer-scale variables. Among a wide range of downscaling methods, regression-based approaches are commonly used for downscaling AOGCM data because of their low computational requirements. However, downscaled variables are generally reproduced at gauged weather stations only. Results at the gauged stations can then be interpolated a posteriori at ungauged locations with kriging or other methods.

In this paper, a spatial Bayesian model is proposed for the downscaling of coarse-scale atmospheric data (i.e., either reanalysis or AOGCM) to minimum and maximum daily temperatures. This approach uses a Bayesian framework for mixing a prior distribution reflecting the monthly spatial dependence of the temperatures with the daily fluctuations induced by the atmospheric predictors. Local characteristics (i.e., altitude and latitude) are also taken into account in the mean of the prior distribution by using a geographical regression model. The posterior distribution thus reflects both monthly local patterns because of the prior and daily larger-scale fluctuations. Finally, the Bayesian approach also allows for the accounting of estimated parameter uncertainty, making it more stable to poor parameter fitting. The method is applied to the southern part of the province of Quebec, Canada. Results show that the downscaled distributions of the temperatures at gauged sites are in sufficient agreement with the validation dataset compared to a classical regression-based method. The proposed model has also the advantage of directly producing temperature maps.

Corresponding author address: Dominique Fasbender, INRS-ETE, 490 de la Couronne, Quebec QC G1K 9A9, Canada. Email: dominique.fasbender@ete.inrs.ca

Save