• Alexandru, A., R. de Elia, R. Laprise, L. Separovic, and S. Biner, 2009: Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon. Wea. Rev., 137 , 16661686.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96 , 833850.

  • Boyer, D. L., P. A. Davies, W. R. Holland, F. Biolley, and H. Honji, 1987: Stratified rotating flow over and around isolated three-dimensional topography. Philos. Trans. Roy. Soc. London, 322A , 213241.

    • Search Google Scholar
    • Export Citation
  • Browning, G. L., J. J. Hack, and P. N. Swartztrauber, 1989: A comparison of three numerical methods for solving differential equations on the sphere. Mon. Wea. Rev., 117 , 10581075.

    • Search Google Scholar
    • Export Citation
  • Byerle, L. A., and J. Paegle, 2003: Modulation of the Great Plains low-level jet and moisture transports by orography and large-scale circulations. J. Geophys. Res., 108 , 8611. doi:10.1029/2002JD003005.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21 , 41324146.

  • Chen, F., and J. Dudhia, 2001a: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part II: Model validation. Mon. Wea. Rev., 129 , 587604.

    • Search Google Scholar
    • Export Citation
  • Daniel, C. J., R. W. Arritt, and C. J. Anderson, 1999: Accuracy of 404-MHz radar profilers for detection of low-level jets over the central United States. J. Appl. Meteor., 38 , 13911396.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., K. J. Allwine, and R. M. Banta, 2006: Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. J. Appl. Meteor. Climatol., 45 , 740753.

    • Search Google Scholar
    • Export Citation
  • Davis, C., S. Low-Nam, and C. Mass, 2000: Dynamics of a Catalina eddy revealed by numerical simulation. Mon. Wea. Rev., 128 , 28852904.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and T. T. Warner, 1993: A three-dimensional investigation of a Carolina low-level jet during GALE IOP 2. Mon. Wea. Rev., 121 , 10301047.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., and J. F. Bresch, 2002: A global version of the PSU–NCAR Mesoscale Model. Mon. Wea. Rev., 130 , 29893007.

  • Engelstaedter, S., and R. Washington, 2007: Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res., 112 , D03103. doi:10.1029/2006JD007195.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., 1995: Mesoscale modeling and four-dimensional data assimilation in areas of highly complex terrain. J. Appl. Meteor., 34 , 27622782.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398, 128 pp.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., D. Rostkier-Edelstein, T. T. Warner, Y. Liu, F. Vandenberghe, Y. Liu, R. Babarsky, and S. P. Swerdlin, 2010: A reanalysis system for the generation of mesoscale climatographies. J. Appl. Meteor. Climatol., 49 , 954972.

    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and S. D. Schubert, 1995: Climatography of the Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8 , 784806.

    • Search Google Scholar
    • Export Citation
  • Hering, W. S., and T. R. Borden, 1962: Diurnal variations in the summer wind field over the central United States. J. Atmos. Sci., 19 , 8186.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10 , 481507.

    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1965: Comparative physical behavior of southerly boundary-layer wind jets. Mon. Wea. Rev., 93 , 133144.

  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19 , 199205.

  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., N. C. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64 , 532547.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Kanamaru, H., and M. Kanamitsu, 2007: Scale-selective bias correction in a downscaling of global analysis using a regional model. Mon. Wea. Rev., 135 , 334350.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, R. Washington, M. C. Todd, Y. Rudich, V. J. Martins, and D. Rosenfeld, 2006: The Bodélé depression—A single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environ. Res. Lett., 1 , 15.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., F. Vandenberghe, S. Low-Nam, T. T. Warner, and S. Swerdlin, 2004: Observation-quality estimation and its application in the NCAR/ATEC real-time FDDA and forecast (RTFDDA) system. Preprints, 20th Conf. on Weather Analysis and Forecasting and 16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., J1.7. [Available online at http://ams.confex.com/ams/pdfpapers/71934.pdf].

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part I: Overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteor. Climatol., 47 , 10771092.

    • Search Google Scholar
    • Export Citation
  • Lo, J. C-F., Z-L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res., 113 , D09112. doi:10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • Mao, H., and R. Talbot, 2004: Role of meteorological processes in two New England ozone episodes during summer 2001. J. Geophys. Res., 109 , D20305. doi:10.1029/2004JD004850.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., and Coauthors, 1993: An evaluation of wind profiler, RASS, and microwave radiometer performance. Bull. Amer. Meteor. Soc., 74 , 599613.

    • Search Google Scholar
    • Export Citation
  • Miller, P. A., M. F. Barth, J. R. Smart, and L. A. Benjamin, 1997: The extent of bird contamination in the hourly winds measured by the NOAA profiler network: Results before and after implementation of the new bird contamination quality control check. Proc. First Symp. on Integrated Observing Systems, Long Beach, CA, Amer. Meteor. Soc., 138–144.

    • Search Google Scholar
    • Export Citation
  • Mitchell, M. J., R. W. Arritt, and K. Labas, 1995: A climatology of the warm season Great Plains low-level jet using wind profiler observations. Wea. Forecasting, 10 , 576591.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated k-correlated model for the longwave. J. Geophys. Res., 102 , 1666316682.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and E. H. Berbery, 2004: Low-level jets and the summer precipitation regimes over North America. J. Geophys. Res., 109 , D06117. doi:10.1029/2003JD004106.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. L. Rife, J. O. Pinto, C. A. Davis, and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23 , 50655084.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y. H. Kuo, T. K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC Satellite retrievals. Mon. Wea. Rev., 136 , 43984420.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19 , 24012404.

  • Nogués-Paegle, J., and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125 , 279291.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., S-W. Li, S. W. Chang, and R. T. Williams, 1995: Flow over mountains: Coriolis force, transient troughs and three dimensionality. Quart. J. Roy. Meteor. Soc., 121 , 593613.

    • Search Google Scholar
    • Export Citation
  • Qian, J. H., A. Seth, and S. Zebiak, 2003: Reinitialized versus continuous simulations for regional climate downscaling. Mon. Wea. Rev., 131 , 28572874.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132 , 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133 , 889910.

    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., and P. K. Smolarkiewicz, 1994: Thermally forced low Froude number flow past three-dimensional obstacles. J. Atmos. Sci., 51 , 117133.

    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Rotunno, R., 1983: On the linear theory of land and sea breeze. J. Atmos. Sci., 40 , 19992009.

  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135 , 12901309.

    • Search Google Scholar
    • Export Citation
  • Seaman, N. L., D. R. Stauffer, and A. M. Lario-Gibbs, 1995: A multiscale four-dimensional data assimilation system applied in the San Joaquin Valley during SARMAP. Part I: Modeling design and basic performance characteristics. J. Appl. Meteor., 34 , 17391761.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: The ERA interim reanalysis. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 3. National Center for Atmospheric Research Tech. Note NCAR/TN-468+STR, 100 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. E. Kingsmill, 2009: Water vapor fluxes and orographic precipitation over Northern California associated with a land-falling atmospheric river. Mon. Wea. Rev., 138 , 74100.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33 , 416434.

  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119 , 734754.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9 , 16981711.

  • Todd, M. C., R. Washington, S. Raghavan, G. Lizcano, and P. Knippertz, 2008: Regional model simulations of the Bodélé low-level jet of northern Chad during the Bodele Dust Experiment (BoDEx 2005). J. Climate, 21 , 9951012.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J., and C. A. Davis, 2006: Corridors of warm-season precipitation in the central United States. Mon. Wea. Rev., 134 , 22972317.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., 2007: From ERA-15 to ERA-40 and ERA-Interim. Proc. ECMWFGEO Workshop on Atmospheric Reanalysis, Reading, United Kingdom, ECMWF, 17–22.

    • Search Google Scholar
    • Export Citation
  • van de Kamp, D. W., F. M. Ralph, M. F. Barth, P. A. Miller, J. R. Smart, and L. A. Benjamin, 1997: The new bird contamination quality control check applied to hourly winds from NOAA’s profiler network. Proc. 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 131–132.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87 , 6377.

  • Vernekar, A. D., B. P. Kirtman, and M. J. Fennessy, 2003: Low-level jets and their effects on the South American summer climate as simulated by the NCEP Eta model. J. Climate, 16 , 297311.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128 , 36643673.

    • Search Google Scholar
    • Export Citation
  • Washington, R., M. Todd, N. J. Middleton, and A. S. Goudie, 2003: Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann. Assoc. Amer. Geogr., 93 , 297313.

    • Search Google Scholar
    • Export Citation
  • Washington, R., M. C. Todd, S. Engelstaedter, S. M’Bainayel, and F. Mitchell, 2006: Dust and the low-level circulation over the Bodélé depression, Chad: Observations from BoDEx 2005. J. Geophys. Res., 111 , D03201. doi:10.1029/2005JD006502.

    • Search Google Scholar
    • Export Citation
  • Weber, B. L., and D. B. Wuertz, 1990: Comparison of rawinsonde and wind profiler radar measurements. J. Atmos. Oceanic Technol., 7 , 157174.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains. J. Appl. Meteor., 36 , 13631376.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85B , 241269.

  • Zhong, S., J. D. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124 , 785806.

    • Search Google Scholar
    • Export Citation
  • Zunckel, M., G. Held, R. A. Preston-Whyte, and A. Joubert, 1996: Low-level wind maxima and the transport of pyrogenic products over southern Africa. J. Geophys. Res., 101 , 2374523755.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 23
PDF Downloads 22 22 22

Global Distribution and Characteristics of Diurnally Varying Low-Level Jets

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 Defense Threat Reduction Agency, Fort Belvoir, Virginia
Restricted access

Abstract

This study documents the global distribution and characteristics of diurnally varying low-level jets (LLJs), including their horizontal, vertical, and temporal structure, with a special emphasis on highlighting the underlying commonalities and unique qualities of the various nocturnal jets. Two tools are developed to accomplish this goal. The first is a 21-yr global reanalysis performed with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) using a horizontal grid spacing of 40 km. A unique characteristic of the reanalysis is the availability of hourly three-dimensional output, which permits the full diurnal cycle to be analyzed. Furthermore, the horizontal grid spacing of 40 km better resolves many physiographic features that host LLJs than other widely used global reanalyses. This makes possible a detailed examination of the systematic onset and cessation of the jets, including time–height representations of the diurnal cycle. The second tool is an index of nocturnal LLJ (NLLJ) activity based upon the vertical structure of the wind’s temporal variation, where the temporal variation is defined in local time. The first available objectively constructed global maps of recurring NLLJs are created from this index, where the various NLLJs can be simultaneously viewed at or near their peak time. These maps not only highlight all of the locations where NLLJs are known to recur, but they also reveal a number of new jets.

The authors examine the basic mechanisms that give rise to the NLLJs identified in four disparate locations, each having a profound influence on the regional climate. The first, the extensively studied Great Plains NLLJ, is used to confirm the veracity of the global analysis and the index of NLLJ activity. It also provides context for three of the many newly identified NLLJs: 1) Tarim Pendi in northwest China; 2) Ethiopia in eastern Africa; and 3) Namibia–Angola in southwest Africa. Jets in these four regions illustrate the variety of physiographic and thermal forcing mechanisms that can produce NLLJs.

Corresponding author address: Daran L. Rife, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: drife@ucar.edu

Abstract

This study documents the global distribution and characteristics of diurnally varying low-level jets (LLJs), including their horizontal, vertical, and temporal structure, with a special emphasis on highlighting the underlying commonalities and unique qualities of the various nocturnal jets. Two tools are developed to accomplish this goal. The first is a 21-yr global reanalysis performed with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) using a horizontal grid spacing of 40 km. A unique characteristic of the reanalysis is the availability of hourly three-dimensional output, which permits the full diurnal cycle to be analyzed. Furthermore, the horizontal grid spacing of 40 km better resolves many physiographic features that host LLJs than other widely used global reanalyses. This makes possible a detailed examination of the systematic onset and cessation of the jets, including time–height representations of the diurnal cycle. The second tool is an index of nocturnal LLJ (NLLJ) activity based upon the vertical structure of the wind’s temporal variation, where the temporal variation is defined in local time. The first available objectively constructed global maps of recurring NLLJs are created from this index, where the various NLLJs can be simultaneously viewed at or near their peak time. These maps not only highlight all of the locations where NLLJs are known to recur, but they also reveal a number of new jets.

The authors examine the basic mechanisms that give rise to the NLLJs identified in four disparate locations, each having a profound influence on the regional climate. The first, the extensively studied Great Plains NLLJ, is used to confirm the veracity of the global analysis and the index of NLLJ activity. It also provides context for three of the many newly identified NLLJs: 1) Tarim Pendi in northwest China; 2) Ethiopia in eastern Africa; and 3) Namibia–Angola in southwest Africa. Jets in these four regions illustrate the variety of physiographic and thermal forcing mechanisms that can produce NLLJs.

Corresponding author address: Daran L. Rife, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: drife@ucar.edu

Save