Multimodel Combination by a Bayesian Hierarchical Model: Assessment of Ice Accumulation over the Oceanic Arctic Region

Malaak Kallache CLIMPACT and LSCE-IPSL, Paris, France

Search for other papers by Malaak Kallache in
Current site
Google Scholar
PubMed
Close
,
Elena Maksimovich LOCEAN-IPSL, Paris, France

Search for other papers by Elena Maksimovich in
Current site
Google Scholar
PubMed
Close
,
Paul-Antoine Michelangeli CLIMPACT, Paris, France

Search for other papers by Paul-Antoine Michelangeli in
Current site
Google Scholar
PubMed
Close
, and
Philippe Naveau LSCE-IPSL, Gif-sur-Yvette, France

Search for other papers by Philippe Naveau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The performance of general circulation models (GCMs) varies across regions and periods. When projecting into the future, it is therefore not obvious whether to reject or to prefer a certain GCM. Combining the outputs of several GCMs may enhance results. This paper presents a method to combine multimodel GCM projections by means of a Bayesian model combination (BMC). Here the influence of each GCM is weighted according to its performance in a training period, with regard to observations, as outcome BMC predictive distributions for yet unobserved observations are obtained. Technically, GCM outputs and observations are assumed to vary randomly around common means, which are interpreted as the actual target values under consideration. Posterior parameter distributions of the authors’ Bayesian hierarchical model are obtained by a Markov chain Monte Carlo (MCMC) method. Advantageously, all parameters—such as bias and precision of the GCM models—are estimated together. Potential time dependence is accounted for by integrating a Kalman filter. The significance of trend slopes of the common means is evaluated by analyzing the posterior distribution of the parameters. The method is applied to assess the evolution of ice accumulation over the oceanic Arctic region in cold seasons. The observed ice index is created out of NCEP reanalysis data. Outputs of seven GCMs are combined by using the training period 1962–99 and prediction periods 2046–65 and 2082–99 with Special Report on Emissions Scenarios (SRES) A2 and B1. A continuing decrease of ice accumulation is visible for the A2 scenario, whereas the index stabilizes for the B1 scenario in the second prediction period.

Corresponding author address: Malaak Kallache, CLIMPACT, 79 rue du Faubourg Poissonnière, 75009 Paris, France. Email: mk@climpact.com

Abstract

The performance of general circulation models (GCMs) varies across regions and periods. When projecting into the future, it is therefore not obvious whether to reject or to prefer a certain GCM. Combining the outputs of several GCMs may enhance results. This paper presents a method to combine multimodel GCM projections by means of a Bayesian model combination (BMC). Here the influence of each GCM is weighted according to its performance in a training period, with regard to observations, as outcome BMC predictive distributions for yet unobserved observations are obtained. Technically, GCM outputs and observations are assumed to vary randomly around common means, which are interpreted as the actual target values under consideration. Posterior parameter distributions of the authors’ Bayesian hierarchical model are obtained by a Markov chain Monte Carlo (MCMC) method. Advantageously, all parameters—such as bias and precision of the GCM models—are estimated together. Potential time dependence is accounted for by integrating a Kalman filter. The significance of trend slopes of the common means is evaluated by analyzing the posterior distribution of the parameters. The method is applied to assess the evolution of ice accumulation over the oceanic Arctic region in cold seasons. The observed ice index is created out of NCEP reanalysis data. Outputs of seven GCMs are combined by using the training period 1962–99 and prediction periods 2046–65 and 2082–99 with Special Report on Emissions Scenarios (SRES) A2 and B1. A continuing decrease of ice accumulation is visible for the A2 scenario, whereas the index stabilizes for the B1 scenario in the second prediction period.

Corresponding author address: Malaak Kallache, CLIMPACT, 79 rue du Faubourg Poissonnière, 75009 Paris, France. Email: mk@climpact.com

Save
  • Anderson, D. L., 1961: Growth rate of sea ice. J. Glaciol., 3 , 11701172.

  • Baettig, M. B., M. Wild, and D. M. Imboden, 2007: A climate change index: Where climate change may be most prominent in the 21st century. Geophys. Res. Lett., 34 , L01705. doi:10.1029/2006GL028159.

    • Search Google Scholar
    • Export Citation
  • Berliner, L. M., and Y. Kim, 2008: Bayesian design and analysis for superensemble-based climate forecasting. J. Climate, 21 , 18911910.

    • Search Google Scholar
    • Export Citation
  • Bloomfield, P., 1992: Trends in global temperature. Climatic Change, 21 , 116.

  • Bromwich, D. H., R. L. Fogt, K. I. Hodges, and J. E. Walsh, 2007: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112 , D10111. doi:10.1029/2006JD007859.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and C. L. Parkinson, 2008: Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res., 113 , C07004. doi:10.1029/2007JC004564.

    • Search Google Scholar
    • Export Citation
  • Chapin III, F. S., and Coauthors, 2006: Building resilience and adaptation to manage Arctic change. Ambio, 35 , 198202.

  • Charbit, S., D. Paillard, and G. Ramstein, 2008: Amount of CO2 emissions irreversibly leading to the total melting of Greenland. Geophys. Res. Lett., 35 , L12503. doi:10.1029/2008GL033472.

    • Search Google Scholar
    • Export Citation
  • Chib, S., and E. Greenberg, 1996: Markov chain Monte Carlo simulation methods in econometrics. Econ. Theory, 12 , 409431.

  • Coelho, C. A. S., S. Pezzulli, M. Balmaseda, F. J. Doblas-Reyes, and D. B. Stephenson, 2004: Forecast calibration and combination: A simple Bayesian approach for ENSO. J. Climate, 17 , 15041516.

    • Search Google Scholar
    • Export Citation
  • Cohn, T. A., and H. F. Lins, 2005: Nature’s style: Naturally trendy. Geophys. Res. Lett., 32 , L23402. doi:10.1029/2005GL024476.

  • Congdon, P., 2003: Applied Bayesian Modelling. John Wiley & Sons, 457 pp.

  • Davison, A. C., 2003: Statistical Models. Cambridge University Press, 726 pp.

  • De Jong, P., and N. Shephard, 1995: The simulation smoother for time series models. Biometrika, 82 , 339350.

  • DelSole, T., 2007: A Bayesian framework for multimodel regression. J. Climate, 20 , 28102826.

  • Dethlefsen, C., and S. Lundbye-Christensen, 2005: Formulating state space models in R with focus on longitudinal regression models. Aalborg University Research Rep. Series R-2005-21, 12 pp.

    • Search Google Scholar
    • Export Citation
  • Döscher, R., K. Wyser, H. E. M. Meier, M. Qian, and R. Redler, 2009: Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice-atmosphere model. Climate Dyn., 11571176. doi:10.1007/s00382-009-0567-y.

    • Search Google Scholar
    • Export Citation
  • Durbin, J., and S. J. Koopman, 2002: A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89 , 603616. doi:10.1093/biomet/89.3.603.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., 2006: Prior distributions for variance parameters in hierarchical models. Bayesian Anal., 1 , 515534.

  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, Eds. 2004: Bayesian Data Analysis. 2nd ed. Chapman & Hall/CRC, 668 pp.

  • Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133 , 10981118.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., P. A. Stott, D. J. Cresswell, N. A. Rayner, C. Gordon, and D. M. H. Sexton, 2002: Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett., 29 , 2175. doi:10.1029/2001GL014575.

    • Search Google Scholar
    • Export Citation
  • Harvey, A. C., T. M. Trimbur, and H. K. Van Dijk, 2007: Trends and cycles in economic time series: A Bayesian approach. J. Econ., 140 , 618649. doi:10.1016/j.jeconom.2006.07.006.

    • Search Google Scholar
    • Export Citation
  • Hassol, S. J., 2004: Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, 139 pp.

  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15 , 559570.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., and Coauthors, 2004: Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus, 56A , 328341.

    • Search Google Scholar
    • Export Citation
  • Kallache, M., H. W. Rust, and J. Kropp, 2005: Trend assessment: Applications for hydrology and climate. Nonlinear Processes Geophys., 12 , 201210.

    • Search Google Scholar
    • Export Citation
  • Kaufman, D. S., and Coauthors, 2009: Recent warming reverses long-term Arctic cooling. Science, 325 , 12361239. doi:10.1126/science.1173983.

    • Search Google Scholar
    • Export Citation
  • Koop, G., and H. K. Van Dijk, 2000: Testing for integration using evolving trend and seasonals models: A Bayesian approach. J. Econ., 97 , 261291.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36 , L15501. doi:10.1029/2009GL039035.

    • Search Google Scholar
    • Export Citation
  • Laidler, G. J., 2006: Inuit and scientific perspectives on the relationship between sea ice and climate change: The ideal complement? Climatic Change, 78 , 407444. doi:10.1007/s10584-006-9064-z.

    • Search Google Scholar
    • Export Citation
  • Laxon, S., N. Peacock, and D. Smith, 2003: High interannual variability of sea ice thickness in the Arctic region. Nature, 425 , 947950. doi:10.1038/nature02050.

    • Search Google Scholar
    • Export Citation
  • Maksimovich, E., and J. C. Gascard, cited. 2010: Winter near-surface warming in NCEP/NCAR reanalysis I. Reanalysis error or arctic warming? Earlier melt onset and later freeze-up? [Available online at http://www.damocles-eu.org/artman2/uploads/1/poster_Sopot_task_5.2.1.pdf].

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., 1986: The surface heat and mass balance. The Geophysics of Sea Ice, N. Untersteiner, Ed., NATO ASI Series B, Vol. 146, Plenum Press, 395–463.

    • Search Google Scholar
    • Export Citation
  • Meinhold, R. J., and N. D. Singpurwalla, 1983: Understanding the Kalman filter. Amer. Stat., 37 , 123127.

  • Min, S-K., and A. Hense, 2006: A Bayesian assessment of climate change using multimodel ensembles. Part I: Global mean surface temperature. J. Climate, 19 , 32373256.

    • Search Google Scholar
    • Export Citation
  • Min, S-K., A. Hense, H. Paeth, and W-T. Kwon, 2004: A Bayesian decision method for climate change signal analysis. Meteor. Z., 13 , 421436.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, 976 pp.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133 , 11551174.

    • Search Google Scholar
    • Export Citation
  • Rougier, J., 2007: Probabilistic inference for future climate using an ensemble of climate model evaluations. Climatic Change, 81 , 247264. doi:10.1007/s10584-006-9156-9.

    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A., and J. Feynman, 2002: Solar influence on a major mode of atmospheric variability. J. Geophys. Res., 107 , 4209. doi:10.1029/2001JD001239.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34 , L09501. doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18 , 15241540.

    • Search Google Scholar
    • Export Citation
  • Tol, R. S. J., and A. F. De Vos, 1998: A Bayesian statistical analysis of the enhanced greenhouse effect. Climatic Change, 38 , 87112.

    • Search Google Scholar
    • Export Citation
  • van Loon, M., and Coauthors, 2007: Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ., 41 , 20832097.

    • Search Google Scholar
    • Export Citation
  • West, M., 1997: Time series decomposition. Biometrika, 84 , 489494.

  • Zhang, X., and J. E. Walsh, 2006: Toward a seasonally ice-covered Arctic ocean: Scenarios from the IPCC AR4 model simulations. J. Climate, 19 , 17301747.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 495 372 23
PDF Downloads 95 35 2