Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes

Neal Butchart Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Neal Butchart in
Current site
Google Scholar
PubMed
Close
,
I. Cionni Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by I. Cionni in
Current site
Google Scholar
PubMed
Close
,
V. Eyring Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by V. Eyring in
Current site
Google Scholar
PubMed
Close
,
T. G. Shepherd University of Toronto, Toronto, Ontario, Canada

Search for other papers by T. G. Shepherd in
Current site
Google Scholar
PubMed
Close
,
D. W. Waugh Johns Hopkins University, Baltimore, Maryland

Search for other papers by D. W. Waugh in
Current site
Google Scholar
PubMed
Close
,
H. Akiyoshi National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by H. Akiyoshi in
Current site
Google Scholar
PubMed
Close
,
J. Austin Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by J. Austin in
Current site
Google Scholar
PubMed
Close
,
C. Brühl Max Planck Institut für Chemie, Mainz, Germany

Search for other papers by C. Brühl in
Current site
Google Scholar
PubMed
Close
,
M. P. Chipperfield University of Leeds, Leeds, Yorkshire, United Kingdom

Search for other papers by M. P. Chipperfield in
Current site
Google Scholar
PubMed
Close
,
E. Cordero San Jose State University, San Jose, California

Search for other papers by E. Cordero in
Current site
Google Scholar
PubMed
Close
,
M. Dameris Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by M. Dameris in
Current site
Google Scholar
PubMed
Close
,
R. Deckert Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by R. Deckert in
Current site
Google Scholar
PubMed
Close
,
S. Dhomse University of Leeds, Leeds, Yorkshire, United Kingdom

Search for other papers by S. Dhomse in
Current site
Google Scholar
PubMed
Close
,
S. M. Frith Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by S. M. Frith in
Current site
Google Scholar
PubMed
Close
,
R. R. Garcia National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by R. R. Garcia in
Current site
Google Scholar
PubMed
Close
,
A. Gettelman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. Gettelman in
Current site
Google Scholar
PubMed
Close
,
M. A. Giorgetta Max Planck Institut für Meteorologie, Hamburg, Germany

Search for other papers by M. A. Giorgetta in
Current site
Google Scholar
PubMed
Close
,
D. E. Kinnison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. E. Kinnison in
Current site
Google Scholar
PubMed
Close
,
F. Li University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by F. Li in
Current site
Google Scholar
PubMed
Close
,
E. Mancini Università L’Aquila, L’Aquila, Italy

Search for other papers by E. Mancini in
Current site
Google Scholar
PubMed
Close
,
C. McLandress University of Toronto, Toronto, Ontario, Canada

Search for other papers by C. McLandress in
Current site
Google Scholar
PubMed
Close
,
S. Pawson NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by S. Pawson in
Current site
Google Scholar
PubMed
Close
,
G. Pitari Università L’Aquila, L’Aquila, Italy

Search for other papers by G. Pitari in
Current site
Google Scholar
PubMed
Close
,
D. A. Plummer Environment Canada, Toronto, Ontario, Canada

Search for other papers by D. A. Plummer in
Current site
Google Scholar
PubMed
Close
,
E. Rozanov Physical–Meteorological Observatory/World Radiation Centre, Davos, and Swiss Federal Institute of Technology, Zurich, Switzerland

Search for other papers by E. Rozanov in
Current site
Google Scholar
PubMed
Close
,
F. Sassi Naval Research Laboratory, Washington, D.C

Search for other papers by F. Sassi in
Current site
Google Scholar
PubMed
Close
,
J. F. Scinocca Meteorological Service of Canada, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by J. F. Scinocca in
Current site
Google Scholar
PubMed
Close
,
K. Shibata Meteorological Research Institute, Tsukuba, Japan

Search for other papers by K. Shibata in
Current site
Google Scholar
PubMed
Close
,
B. Steil Max Planck Institut für Chemie, Mainz, Germany

Search for other papers by B. Steil in
Current site
Google Scholar
PubMed
Close
, and
W. Tian University of Leeds, Leeds, Yorkshire, United Kingdom

Search for other papers by W. Tian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade−1 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade−1 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (∼70 hPa) increases by almost 2% decade−1, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

Corresponding author address: Neal Butchart, Met Office, Hadley Centre, FitzRoy Road, Exeter, Devon, EX1 3PB, United Kingdom. Email: neal.butchart@metoffice.gov.uk

Abstract

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade−1 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade−1 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (∼70 hPa) increases by almost 2% decade−1, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

Corresponding author address: Neal Butchart, Met Office, Hadley Centre, FitzRoy Road, Exeter, Devon, EX1 3PB, United Kingdom. Email: neal.butchart@metoffice.gov.uk

Save
  • Akiyoshi, H., and Coauthors, 2009: A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios. J. Geophys. Res., 114 , D03103. doi:10.1029/2007JD009261.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56 , 41674182.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysical Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and F. Li, 2006: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air. Geophys. Res. Lett., 33 , L17807. doi:10.1029/2006GL026867.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and R. J. Wilson, 2006: Ensemble simulations of the decline and recovery of stratospheric ozone. J. Geophys. Res., 111 , D16314. doi:10.1029/2005JD006907.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2003: Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys., 3 , 127.

    • Search Google Scholar
    • Export Citation
  • Austin, J., R. J. Wilson, F. Li, and H. Vömel, 2007: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations. J. Atmos. Sci., 64 , 905921.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2009: Coupled chemistry climate model simulations of stratospheric temperatures and their trends for the recent past. Geophys. Res. Lett., 36 , L13809. doi:10.1029/2009GL038462.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., M. Dameris, and T. G. Shepherd, 2007: How will the stratosphere affect climate change? Science, 316 , 15761577.

  • Beagley, S. R., J. de Grandpré, J. N. Koshyk, N. A. McFarlane, and T. G. Shepherd, 1997: Radiative-dynamical climatology of the first-generation Canadian Middle Atmosphere Model. Atmos.–Ocean, 35 , 293331.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410 , 799802.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., J. Austin, J. R. Knight, A. A. Scaife, and M. L. Gallani, 2000: The response of the stratospheric climate to projected changes in the concentrations of well-mixed greenhouse gases from 1992 to 2051. J. Climate, 13 , 21422159.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27 , 727741.

    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., B. P. Luo, and T. Peter, 1995: An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal coupled HNO3. Geophys. Res. Lett., 22 , 18771880.

    • Search Google Scholar
    • Export Citation
  • Considine, D. B., A. R. Douglass, P. S. Connell, D. E. Kinnison, and D. A. Rotman, 2000: A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft. J. Geophys. Res., 105 , 39553974.

    • Search Google Scholar
    • Export Citation
  • Cordero, E., and P. M. de F. Forster, 2006: Stratospheric variability and trends in models used for the IPCC AR4. Atmos. Chem. Phys., 6 , 53695380.

    • Search Google Scholar
    • Export Citation
  • Dameris, M., and Coauthors, 2005: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcings. Atmos. Chem. Phys., 5 , 21212145.

    • Search Google Scholar
    • Export Citation
  • Dameris, M., S. Matthes, R. Deckert, V. Grewe, and M. Ponater, 2006: Solar cycle effect delays onset of ozone recovery. Geophys. Res. Lett., 33 , L03806. doi:10.1029/2005GL024741.

    • Search Google Scholar
    • Export Citation
  • Deckert, R., and M. Dameris, 2008: Higher tropical SSTs strengthen the tropical upwelling via deep convection. Geophys. Res. Lett., 35 , L10813. doi:10.1029/2008GL033719.

    • Search Google Scholar
    • Export Citation
  • de Grandpré, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. McConnell, A. S. Medvedev, and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res., 105 , 2647526492.

    • Search Google Scholar
    • Export Citation
  • Egorova, T., E. Rozanov, V. Zubov, E. Manzini, W. Schmutz, and T. Peter, 2005: Chemistry-climate model SOCOL: A validation of the present-day climatology. Atmos. Chem. Phys., 5 , 15571576.

    • Search Google Scholar
    • Export Citation
  • Engel, A., and Coauthors, 2009: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci., 2 , 2831.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., D. E. Kinnison, and T. G. Shepherd, 2005: Overview of planned couple chemistry-climate simulations to support upcoming ozone and climate assessments. SPARC Newsletter, No. 25, Stratospheric Processes and their Role in Climate IPO, Toronto, ON, Canada, 11–17.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace spices, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111 , D22308. doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multi-model projections of ozone recovery in the 21st century. J. Geophys. Res., 112 , D16303. doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., A. I. Jonsson, J. de Grandpré, S. R. Beagley, C. McLandress, K. Semeniuk, and T. G. Shepherd, 2007: Response of the middle atmosphere to CO2 doubling: Results from the Canadian Middle Atmosphere Model. J. Climate, 20 , 11211144.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90 , 38503868.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65 , 27312739.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulations of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112 , D09301. doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Garny, H., M. Dameris, and A. Stenke, 2009: Impact of prescribed SSTs on climatologies and long-term trends in CCM simulations. Atmos. Chem. Phys. Discuss., 9 , 44894524.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and L. Bengtsson, 1999: The potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapor in general circulation model experiments. J. Geophys. Res., 104 , 60036020.

    • Search Google Scholar
    • Export Citation
  • Hanson, D., and K. Mauersberger, 1988: Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere. Geophys. Res. Lett., 15 , 855858.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. Butchart, P. H. Haynes, and S. H. E. Hare, 2007: A note on forced versus internal variability of the stratosphere. Geophys. Res. Lett., 34 , L12803. doi:10.1029/2007GL029726.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of the extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651678.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997: Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol.-Terr. Phys., 59 , 387400.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, and C. McLandress, 2009: Past and future conditions for polar stratospheric cloud formation simulated by the Canadian Middle Atmosphere Model. Atmos. Chem. Phys., 9 , 483495.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39 , 791799.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglas, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2006: The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations. J. Climate, 19 , 13271353.

    • Search Google Scholar
    • Export Citation
  • Jonsson, A. I., J. de Grandpré, V. I. Fomichev, J. C. McConnell, and S. R. Beagley, 2004: Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback. J. Geophys. Res., 109 , D24103. doi:10.1029/2004JD005093.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., B. A. Boville, and B. P. Briegleb, 1988: Response of a general circulation model to a prescribed Antarctic ozone hole. Nature, 332 , 501504.

    • Search Google Scholar
    • Export Citation
  • Kurokawa, J., H. Akiyoshi, T. Nagashima, H. Masunaga, M. Takahashi, and H. Nakane, 2005: Effects of atmospheric sphericity on stratospheric chemistry and dynamics over Antarctica. J. Geophys. Res., 110 , D21305. doi:10.1029/2005JD005798.

    • Search Google Scholar
    • Export Citation
  • Li, F., J. Austin, and J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: A coupled chemistry–climate model simulation. J. Climate, 21 , 4057.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , 97079714.

  • Mahlman, J. D., L. J. Umscheid, and J. P. Pinto, 1994: Transport, radiative, and dynamical effects of the Antarctic ozone hole: A GFDL “SKYHI” model experiment. J. Atmos. Sci., 51 , 489508.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., J. L. Sabutis, S. Pawson, M. L. Santee, B. Naujokat, R. Swinbank, M. E. Gelman, and W. Ebisuzaki, 2003: Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies. J. Geophys. Res., 108 , 8328. doi:10.1029/2001JD001149.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2005: Diagnostic comparison of meteorological analyses during the 2002 Antarctic winter. Mon. Wea. Rev., 133 , 12611278.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., B. Steil, C. Brühl, M. A. Giorgetta, and K. Krüger, 2003: A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling. J. Geophys. Res., 108 , 4429. doi:10.1029/2002JD002977.

    • Search Google Scholar
    • Export Citation
  • Matear, R. J., and A. Lenton, 2008: Impact of historical climate change on the Southern Ocean carbon cycle. J. Climate, 21 , 58205834.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22 , 15161540.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, Eds. 2000: Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • Nathan, T. R., and E. C. Cordero, 2007: An ozone-modified refractive index for vertically propagating planetary waves. J. Geophys. Res., 112 , D02105. doi:10.1029/2006JD007357.

    • Search Google Scholar
    • Export Citation
  • Oman, L., D. W. Waugh, S. Pawson, R. S. Stolarski, and P. A. Newman, 2009: On the influence of anthropogenic forcings on changes in the stratospheric mean age. J. Geophys. Res., 114 , D03105. doi:10.1029/2008JD010378.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., K. Krüger, R. Swinbank, M. Bailey, and A. O’Neill, 1999: Intercomparison of two stratospheric analyses: Temperatures relevant to polar stratospheric cloud formation. J. Geophys. Res., 104 , 20412050.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., R. S. Stolarski, A. R. Douglass, P. A. Newman, J. E. Nielsen, S. M. Frith, and M. L. Gupta, 2008: Goddard Earth Observing System chemistry-climate model simulations of stratospheric ozone-temperature coupling between 1950 and 2005. J. Geophys. Res., 113 , D12103. doi:10.1029/2007JD009511.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16 , 30113026.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35 , L08714. doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Pitari, G., E. Mancini, V. Rizi, and D. Shindell, 2002: Feedback of future climate and sulfur emission changes on stratospheric aerosols and ozone. J. Atmos. Sci., 59 , 414440.

    • Search Google Scholar
    • Export Citation
  • Rex, M., and Coauthors, 2006: Arctic winter 2005: Implications for stratospheric ozone loss and climate change. Geophys. Res. Lett., 33 , L23808. doi:10.1029/2006GL026731.

    • Search Google Scholar
    • Export Citation
  • Rozanov, E., and Coauthors, 2005: Assessment of the ozone and temperature variability during 1979–1993 with the chemistry-climate model SOCOL. Adv. Space Res., 35 , 13751384.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2008: Consistency of modelled and observed temperature trend in the tropical troposphere. Int. J. Climatol., 28 , 17031722.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59 , 14731489.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32 , L18715. doi:10.1029/2005GL023226.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave parameterization for general circulation models. J. Atmos. Sci., 20 , 667682.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8 , 70557074.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and T. G. Shepherd, 2007: Angular momentum conservation and gravity wave drag parameterization: Implications for climate models. J. Atmos. Sci., 64 , 190203.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., M. Sigmond, T. G. Shepherd, and J. F. Scinocca, 2009: Sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. J. Climate, 22 , 27262742.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and A. I. Jonsson, 2008: On the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting substances and well-mixed greenhouse gases. Atmos. Chem. Phys., 8 , 14351444.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and M. Deushi, 2005: Partitioning between resolved wave forcing and unresolved gravity wave forcing to the quasi-biennial oscillation as revealed with a coupled chemistry-climate model. Geophys. Res. Lett., 32 , L12820. doi:10.1029/2005/GL022885.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., M. Deushi, T. T. Sekiyama, and H. Yoshimura, 2005: Development of the MRI chemical transport model for the study of stratospheric chemistry. Pap. Meteor. Geophys., 55 , 75119.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., M. Watanabe, M. Kimoto, and T. Nozawa, 2005: Anthropogenic and natural forcing impacts on ENSO-like decadal variability during the second half of the 20th century. Geophys. Res. Lett., 32 , L21714. doi:10.1029/2005GL023871.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., and L. V. Lyjak, 1985: An observational estimate of gravity wave drag from the momentum balance in the middle atmosphere. J. Geophys. Res., 90 , 22332241.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and Coauthors, 2008: Impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320 , 14861489.

    • Search Google Scholar
    • Export Citation
  • Steil, B., C. Brühl, E. Manzini, P. J. Crutzen, J. Lelieveld, P. J. Rasch, E. Roeckner, and K. Krüger, 2003: A new interactive chemistry-climate model: 1. Present-day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data. J. Geophys. Res., 108 , 4290. doi:10.1029/2002JD002971.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. Lawrence Livermore National Laboratory PCMDI Rep. 60, 28 pp. [Available online at http://www-pcmdi.llnl.gov/publications/pdf/60.pdf].

    • Search Google Scholar
    • Export Citation
  • Tian, W., and M. P. Chipperfield, 2005: A new coupled chemistry-climate model for the stratosphere: The importance of coupling for future O3-climate predictions. Quart. J. Roy. Meteor. Soc., 131 , 281304.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 1996: On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere. J. Atmos. Sci., 53 , 32133235.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., 2009: Atmospheric dynamics: The age of stratospheric air. Nat. Geosci., 2 , 1416.

  • WMO, 2003: Scientific assessment of ozone depletion: 2002. World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 47, 498 pp.

    • Search Google Scholar
    • Export Citation
  • WMO, 2007: Scientific assessment of ozone depletion: 2006. World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 50, 572 pp.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., A. Noda, T. Uchiyama, S. Kusunoki, and A. Kitoh, 2005: Climate changes of the twentieth through twenty-first centuries simulated by the MRI-CGCM2.3. Pap. Meteor. Geophys., 56 , 924.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2051 722 27
PDF Downloads 753 226 17