Can North Atlantic Sea Ice Anomalies Account for Dansgaard–Oeschger Climate Signals?

Camille Li Bjerknes Centre for Climate Research, and Department of Earth Science, University of Bergen, Bergen, Norway

Search for other papers by Camille Li in
Current site
Google Scholar
PubMed
Close
,
David S. Battisti Department of Atmospheric Sciences, University of Washington, Seattle, Washington, and Geophysical Institute, University of Bergen, Bergen, Norway

Search for other papers by David S. Battisti in
Current site
Google Scholar
PubMed
Close
, and
Cecilia M. Bitz Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Cecilia M. Bitz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

North Atlantic sea ice anomalies are thought to play an important role in the abrupt Dansgaard–Oeschger (D–O) cycles of the last glacial period. This model study investigates the impacts of changes in North Atlantic sea ice extent in glacial climates to help provide geographical constraints on their involvement in D–O cycles. Based on a coupled climate model simulation of the Last Glacial Maximum (21 ka), the Nordic seas and western North Atlantic (broadly, south of Greenland) are identified as two plausible regions for large and persistent displacements of the sea ice edge in the glacial North Atlantic. Sea ice retreat scenarios targeting these regions are designed to represent ice cover changes associated with the cold-to-warm (stadial-to-interstadial) transitions of D–O cycles. The atmospheric responses to sea ice retreat in the Nordic seas and in the western North Atlantic are tested individually and together using an atmospheric general circulation model. The Nordic seas ice retreat causes 10°C of winter warming and a 50% increase in snow accumulation at Greenland Summit; concomitant ice retreat in the western North Atlantic has little additional effect. The results suggest that displacements of the winter sea ice edge in the Nordic seas are important for creating the observed climate signals associated with D–O cycles in the Greenland ice cores.

Corresponding author address: Camille Li, Bjerknes Centre for Climate Research, Allegaten 55, 5007 Bergen, Norway. Email: camille@uib.no

Abstract

North Atlantic sea ice anomalies are thought to play an important role in the abrupt Dansgaard–Oeschger (D–O) cycles of the last glacial period. This model study investigates the impacts of changes in North Atlantic sea ice extent in glacial climates to help provide geographical constraints on their involvement in D–O cycles. Based on a coupled climate model simulation of the Last Glacial Maximum (21 ka), the Nordic seas and western North Atlantic (broadly, south of Greenland) are identified as two plausible regions for large and persistent displacements of the sea ice edge in the glacial North Atlantic. Sea ice retreat scenarios targeting these regions are designed to represent ice cover changes associated with the cold-to-warm (stadial-to-interstadial) transitions of D–O cycles. The atmospheric responses to sea ice retreat in the Nordic seas and in the western North Atlantic are tested individually and together using an atmospheric general circulation model. The Nordic seas ice retreat causes 10°C of winter warming and a 50% increase in snow accumulation at Greenland Summit; concomitant ice retreat in the western North Atlantic has little additional effect. The results suggest that displacements of the winter sea ice edge in the Nordic seas are important for creating the observed climate signals associated with D–O cycles in the Greenland ice cores.

Corresponding author address: Camille Li, Bjerknes Centre for Climate Research, Allegaten 55, 5007 Bergen, Norway. Email: camille@uib.no

Save
  • Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17 , 890905.

    • Search Google Scholar
    • Export Citation
  • Alley, R., and Coauthors, 1993: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362 , 527529.

    • Search Google Scholar
    • Export Citation
  • Andersen, K. K., and Coauthors, 2004: High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431 , 147151.

    • Search Google Scholar
    • Export Citation
  • Andersen, K. K., and Coauthors, 2006: The Greenland ice core chronology 2005, 15–42 ka. Part 1: Constructing the time scale. Quat. Sci. Rev., 25 , 32463257.

    • Search Google Scholar
    • Export Citation
  • Arzel, O., T. Fichefet, and H. Goosse, 2006: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Modell., 12 , 401405.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104 , 1566915677.

  • Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea ice edge. J. Climate, 18 , 29032921.

  • Bitz, C. M., J. C. H. Chiang, W. Cheng, and J. J. Barsugli, 2007: Rates of thermohaline recovery from freshwater pulses in modern, last glacial maximum, and greenhouse warming climates. Geophys. Res. Lett., 34 , L07708. doi:10.1029/2006GL029237.

    • Search Google Scholar
    • Export Citation
  • Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani, 1993: Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 265 , 143147.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3 , 261277.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B., C. Bitz, E. Hunke, W. Lipscomb, M. Holland, J. Schramm, and R. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, version 3. NCAR Tech. Note NCAR/TN-463+STR, 70 pp.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: The response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33 , L01702. doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 2000: Abrupt climate change: Causal constraints provided by the paleoclimate record. Earth Sci. Rev., 51 , 137154.

  • Broecker, W. S., D. M. Peteet, and D. Rind, 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315 , 2126.

    • Search Google Scholar
    • Export Citation
  • Byrkjedal, Ø, N. G. Kvamstø, M. Meland, and E. Jansen, 2006: Simulated climate response in the Last Glacial Maximum to changed sea-ice conditions in the Nordic seas. Climate Dyn., 26 , 473487.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., C. M. Bitz, and J. C. H. Chiang, 2007: Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. Ocean Circulation: Mechanisms and Impacts, A. Schmittner et al., Eds., Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 295–313.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and C. M. Bitz, 2005: The influence of high-latitude ice on the position of the marine intertropical convergence zone. Climate Dyn., 25 , 477496.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions. Paleoceanography, 18 , 1094. doi:10.1029/2003PA000916.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., cited. 2002: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/nsidc-0079.html].

    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., 2000: CLIMAP SSTs re-revisited. Climate Dyn., 16 , 241255.

  • Cuffey, K., and G. Clow, 1997: Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys. Res., 102 , 2638326396.

    • Search Google Scholar
    • Export Citation
  • Cuffey, K., R. Alley, P. Grootes, J. Bolzan, and S. Anandakrishnan, 1994: Calibration of the δ18O isotopic paleothermometer for central Greenland, using borehole temperatures. J. Glaciol., 40 , 341349.

    • Search Google Scholar
    • Export Citation
  • Curry, J., J. L. Schramm, and E. E. Ebert, 1995: Sea ice–albedo climate feedback mechanism. J. Climate, 8 , 240247.

  • Dällenbach, A., T. Blunier, J. Flückiger, B. Stauffer, J. Chappellaz, and D. Raynaud, 2000: Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial Maximum and the transition to the Holocene. Geophys. Res. Lett., 27 , 10051008.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 264 , 218220.

    • Search Google Scholar
    • Export Citation
  • Denton, G. H., R. B. Alley, G. C. Comer, and W. S. Broecker, 2005: The role of seasonality in abrupt climate change. Quat. Sci. Rev., 24 , 11591182.

    • Search Google Scholar
    • Export Citation
  • Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13 , 617633.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. Holland, G. Reverdin, and M. Timlin, 2002: Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures. J. Geophys. Res., 107 , 3035. doi:10.1029/2000JC000683.

    • Search Google Scholar
    • Export Citation
  • de Vernal, A., and Coauthors, 2005: Reconstruction of sea-surface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages. Quat. Sci. Rev., 24 , 897924.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., K. W. Oleson, G. B. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z-L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23022324.

    • Search Google Scholar
    • Export Citation
  • Fang, Z., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7 , 18971913.

    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. Meier, and M. Savoie, cited. 2009: Sea ice index. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/seaice_index/index.html].

    • Search Google Scholar
    • Export Citation
  • Flückiger, J., A. Dällenbach, B. Stauffer, T. Stocker, D. Raynaud, and J-M. Barnola, 1999: Variations of the atmospheric N2O concentration during abrupt climatic changes. Science, 285 , 227230.

    • Search Google Scholar
    • Export Citation
  • Gildor, H., and E. Tziperman, 2003: Sea-ice switches and abrupt climate change. Philos. Trans. Roy. Soc. London, A361 , 19351942.

  • Grootes, P., and M. Stuiver, 1997: Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution. J. Geophys. Res., 102 , 2645526470.

    • Search Google Scholar
    • Export Citation
  • Hebbeln, D., T. Dokken, E. Andersen, M. Held, and A. Elverhoi, 1994: Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature, 370 , 357360.

    • Search Google Scholar
    • Export Citation
  • Hemming, S. R., 2004: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42 , RG1005. doi:10.1029/2003RG000128.

    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36 , L08707. doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Huber, C., and Coauthors, 2006: Isotope calibrated Greenland temperature record over marine isotope stage 3 and its relation to CH4. Earth Planet. Sci. Lett., 243 , 504519.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., G. Danabasoglu, M. Holland, Y-O. Kwon, and W. Large, 2008: Ocean viscosity and climate. J. Geophys. Res., 113 , C06017. doi:10.1029/2007JC004515.

    • Search Google Scholar
    • Export Citation
  • Johnsen, S., D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup, 1995: Greenland paleotemperatures derived from GRIP borehole temperature and ice core isotope profiles. Tellus, 47B , 624.

    • Search Google Scholar
    • Export Citation
  • Johnsen, S., and Coauthors, 2001: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GISP2, Renland, and NorthGRIP. J. Quat. Sci., 16 , 299307.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 1997: Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res., 102 , 2647126487.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 2007: The GRIP deuterium-excess record. Quat. Sci. Rev., 26 , 117.

  • Kageyama, M., and Coauthors, 2006: Last Glacial Maximum temperatures over the North Atlantic, Europe, and western Siberia: A comparison between PMIP models, MARGO sea-surface temperatures, and pollen-based reconstructions. Quat. Sci. Rev., 25 , 20822102.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., J. Flückiger, T. Stocker, and A. Timmerman, 2004: Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature, 430 , 851856.

    • Search Google Scholar
    • Export Citation
  • Kucera, M., and Coauthors, 2005: Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev., 24 , 951998.

    • Search Google Scholar
    • Export Citation
  • Laîné, A., and Coauthors, 2009: Northern hemisphere storm tracks during the last glacial maximum in PMIP2 ocean–atmosphere coupled models: Energetic study, seasonal cycle and precipitation. Climate Dyn., 32 , 593614.

    • Search Google Scholar
    • Export Citation
  • Landais, A., and Coauthors, 2004a: A continuous record of temperature evolution over a sequence of Dansgaard–Oeschger events during marine isotopic stage 4 (76 to 62 kyr BP). Geophys. Res. Lett., 31 , L22211. doi:10.1029/2004GL021193.

    • Search Google Scholar
    • Export Citation
  • Landais, A., and Coauthors, 2004b: Quantification of rapid temperature change during DO event 12 and phasing with methane inferred from air isotopic measurements. Earth Planet. Sci. Lett., 225 , 221232.

    • Search Google Scholar
    • Export Citation
  • Lang, C., M. Leuenberger, J. Schwander, and S. Johnsen, 1999: 16°C rapid temperature variation in Central Greenland 70 000 years ago. Science, 286 , 934937.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and H-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60 , 14901503.

  • Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21 , 35613579.

    • Search Google Scholar
    • Export Citation
  • Li, C., D. S. Battisti, D. P. Schrag, and E. Tziperman, 2005: Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys. Res. Lett., 32 , L19702. doi:10.1029/2005GL023492.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science, 325 , 310314.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm-track characteristics of the response. J. Climate, 17 , 857876.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2005: GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science, 309 , 118121.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2006: Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Climate Dyn., 27 , 437440.

    • Search Google Scholar
    • Export Citation
  • Meland, M. Y., E. Jansen, and H. Elderfield, 2005: Constraints on SST estimates for the northern North Atlantic/Nordic seas during LGM. Quat. Sci. Rev., 24 , 835852.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., A. Ganapolski, and A. Levermann, 2007: Atlantic subsurface temperature: Response to a shutdown of the overturning circulation and consequences for its recovery. J. Climate, 20 , 48844898.

    • Search Google Scholar
    • Export Citation
  • Monnin, E., A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T. Stocker, D. Raynaud, and J-M. Barnola, 2001: Atmospheric CO2 concentrations over the last glacial termination. Science, 291 , 112114.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B., and E. Brady, 2010: The sensitivity of the climate response to the magnitude and location of freshwater forcing: Last glacial maximum experiments. Quat. Sci. Rev., 29 , 5673.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B., E. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19 , 25262544.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B., and Coauthors, 2009: A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum. Climate Dyn., 32 , 799815.

    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., C. Li, J. J. Wettstein, K. H. Nisancioglu, and D. S. Battisti, 2009: Changes in atmospheric variability in a glacial climate and the impacts on proxy data: A model intercomparison. Climate Past, 5 , 489502.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age Earth. Annu. Rev. Earth Planet. Sci., 32 , 111149.

  • Rasmussen, T., and E. Thomsen, 2004: The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations. Palaeogeogr., Palaeoclimatol., Palaeoecol., 210 , 101116.

    • Search Google Scholar
    • Export Citation
  • Renssen, H., and R. Isarin, 2001: The two major warming phases of the last deglaciation at ∼14.7 and ∼11.5 ka cal BP in Europe: Climate reconstructions and AGCM experiments. Global Planet. Change, 30 , 117153.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Healy, C. Parkinson, and D. Martinson, 1995: The role of sea ice in 2 × CO2 climate model sensitivity. Part 1: The total influence of sea ice thickness and extent. J. Climate, 8 , 449463.

    • Search Google Scholar
    • Export Citation
  • Rogers, J., and H. van Loon, 1979: The seesaw in winter temperatures between Greenland and Northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon. Wea. Rev., 107 , 509519.

    • Search Google Scholar
    • Export Citation
  • Ruhlemann, C., S. Mulitza, G. Lohmann, A. Paul, M. Prange, and G. Wefer, 2004: Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining paleoclimate data and modeling results for the last deglaciation. Paleoceanography, 19 , PA1025. doi:10.1029/2003PA000948.

    • Search Google Scholar
    • Export Citation
  • Sachs, J. P., and S. J. Lehman, 1999: Subtropical North Atlantic temperatures 60 000 to 30 000 years ago. Science, 286 , 756759.

  • Sánchez Goñi, M. F., A. Landais, W. J. Fletcher, F. Naughton, S. Desprat, and J. Duprat, 2008: Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev., 27 , 11361151.

    • Search Google Scholar
    • Export Citation
  • Seierstad, I. A., and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33 , 937943.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6 , 379389.

    • Search Google Scholar
    • Export Citation
  • Severinghaus, J. P., T. Sowers, E. J. Brook, R. B. Alley, and M. L. Bender, 1998: Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391 , 141146.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and P. Gent, 2002: Reference manual for the Parallel Ocean Program (POP), ocean component of the Community Climate System Model (CCSM2.0 and 3.0). Los Alamos National Laboratory Tech. Rep. LA-UR-02-2484, 74 pp.

    • Search Google Scholar
    • Export Citation
  • Strong, C., G. Magnusdottir, and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22 , 60216032.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. C., and Coauthors, 1993: Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature, 366 , 549552.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54 , 251267.

    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., and L. A. Mysak, 2000: Is there a dominant timescale of natural climate variability in the Arctic? J. Climate, 13 , 34123434.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and C. M. Johnson, 1979: An analysis of Arctic sea ice fluctuations. J. Phys. Oceanogr., 9 , 580591.

  • Wolff, E., J. Chappellaz, T. Blunier, S. Rasmussen, and A. Svensson, 2010: Millennial-scale variability during the last glacial: The ice core record. Quat. Sci. Rev., doi:10.1016/j.quascirev.2009.10.013, in press.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18 , 18531860.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1733 751 46
PDF Downloads 819 147 10