Tropical Oceanic Causes of Interannual to Multidecadal Precipitation Variability in Southeast South America over the Past Century

Richard Seager Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
,
Naomi Naik Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Naomi Naik in
Current site
Google Scholar
PubMed
Close
,
Walter Baethgen International Research Institute for Climate and Society, Palisades, New York

Search for other papers by Walter Baethgen in
Current site
Google Scholar
PubMed
Close
,
Andrew Robertson International Research Institute for Climate and Society, Palisades, New York

Search for other papers by Andrew Robertson in
Current site
Google Scholar
PubMed
Close
,
Yochanan Kushnir Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Yochanan Kushnir in
Current site
Google Scholar
PubMed
Close
,
Jennifer Nakamura Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Jennifer Nakamura in
Current site
Google Scholar
PubMed
Close
, and
Stephanie Jurburg Columbia College, Columbia University, New York, New York

Search for other papers by Stephanie Jurburg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations, atmosphere models forced by historical SSTs, and idealized simulations are used to determine the causes and mechanisms of interannual to multidecadal precipitation anomalies over southeast South America (SESA) since 1901. About 40% of SESA precipitation variability over this period can be accounted for by global SST forcing. Both the tropical Pacific and Atlantic Oceans share the driving of SESA precipitation, with the latter contributing the most on multidecadal time scales and explaining a wetting trend from the early midcentury until the end of the last century. Cold tropical Atlantic SST anomalies are shown to drive wet conditions in SESA. The dynamics that link SESA precipitation to tropical Atlantic SST anomalies are explored. Cold tropical Atlantic SST anomalies force equatorward-flowing upper-tropospheric flow to the southeast of the tropical heating anomaly, and the vorticity advection by this flow is balanced by vortex stretching and ascent, which drives the increased precipitation. The 1930s Pampas Dust Bowl drought occurred, via this mechanism, in response to warm tropical Atlantic SST anomalies. The atmospheric response to cold tropical Pacific SSTs also contributed. The tropical Atlantic SST anomalies linked to SESA precipitation are the tropical components of the Atlantic multidecadal oscillation. There is little evidence that the large trends over past decades are related to anthropogenic radiative forcing, although models project that this will cause a modest wetting of the climate of SESA. As such, and if the Atlantic multidecadal oscillation has shifted toward a warm phase, it should not be assumed that the long-term wetting trend in SESA will continue. Any reversal to a drier climate more typical of earlier decades would have clear consequences for regional agriculture and water resources.

Corresponding author address: Richard Seager, Oceanography, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964. Email: seager@ldeo.columbia.edu

Abstract

Observations, atmosphere models forced by historical SSTs, and idealized simulations are used to determine the causes and mechanisms of interannual to multidecadal precipitation anomalies over southeast South America (SESA) since 1901. About 40% of SESA precipitation variability over this period can be accounted for by global SST forcing. Both the tropical Pacific and Atlantic Oceans share the driving of SESA precipitation, with the latter contributing the most on multidecadal time scales and explaining a wetting trend from the early midcentury until the end of the last century. Cold tropical Atlantic SST anomalies are shown to drive wet conditions in SESA. The dynamics that link SESA precipitation to tropical Atlantic SST anomalies are explored. Cold tropical Atlantic SST anomalies force equatorward-flowing upper-tropospheric flow to the southeast of the tropical heating anomaly, and the vorticity advection by this flow is balanced by vortex stretching and ascent, which drives the increased precipitation. The 1930s Pampas Dust Bowl drought occurred, via this mechanism, in response to warm tropical Atlantic SST anomalies. The atmospheric response to cold tropical Pacific SSTs also contributed. The tropical Atlantic SST anomalies linked to SESA precipitation are the tropical components of the Atlantic multidecadal oscillation. There is little evidence that the large trends over past decades are related to anthropogenic radiative forcing, although models project that this will cause a modest wetting of the climate of SESA. As such, and if the Atlantic multidecadal oscillation has shifted toward a warm phase, it should not be assumed that the long-term wetting trend in SESA will continue. Any reversal to a drier climate more typical of earlier decades would have clear consequences for regional agriculture and water resources.

Corresponding author address: Richard Seager, Oceanography, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964. Email: seager@ldeo.columbia.edu

Save
  • Aceituno, P., 1988: On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Mon. Wea. Rev., 116 , 505524.

    • Search Google Scholar
    • Export Citation
  • Andreoli, R. V., and M. T. Kayano, 2005: ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific Decadal Oscillation regimes. Int. J. Climatol., 25 , 20172030.

    • Search Google Scholar
    • Export Citation
  • Baldi, G., and J. M. Paruelo, 2008: Land-use and land cover dynamics in South American temperate grasslands. Ecol. Soc., 13 , 6. [Available online at http://www.ecologyandsociety.org/vol13/iss2/art6/].

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., 2010: Influence of ENSO and the South Atlantic Ocean on climate predictability over southeastern South America. Climate Dyn., doi:10.1007/s00382-009-0666-9, in press.

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., P. Chang, and R. Saravanan, 2002: Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J. Climate, 15 , 745763.

    • Search Google Scholar
    • Export Citation
  • Barros, V. R., M. E. Doyle, and I. A. Camilloni, 2008: Precipitation trends in southeastern South America: Relationship with ENSO phases and with low-level circulation. Theor. Appl. Climatol., 93 , 1933.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J., F. Martinez, and E. C. Segura, 2007: Projections of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: Precipitation mean state and seasonal cycle in South America. Climate Dyn., 28 , 255271.

    • Search Google Scholar
    • Export Citation
  • Cazes-Boezio, G., A. W. Robertson, and C. R. Mechoso, 2003: Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay. J. Climate, 16 , 11591176.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., S. K. Behera, and T. Yamagata, 2008: Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett., 35 , L14S12. doi:10.1029/2008GL034204.

    • Search Google Scholar
    • Export Citation
  • Chaves, R. R., and P. Nobre, 2004: Interactions between sea surface temperature over the South Atlantic Ocean and the South Atlantic Convergence Zone. Geophys. Res. Lett., 31 , L03204. doi:10.1029/2003GL018647.

    • Search Google Scholar
    • Export Citation
  • Cook, B., R. Miller, and R. Seager, 2009: Amplification of the North American Dust Bowl drought through human-induced land degradation. Proc. Natl. Acad. Sci. USA, 106 , 49975001.

    • Search Google Scholar
    • Export Citation
  • De Almeida, R. A. F., P. Nobre, R. J. Haarsma, and E. J. D. Campos, 2007: Negative ocean-atmosphere feedback in the South Atlantic Convergence Zone. Geophys. Res. Lett., 34 , L18809. doi:10.1029/2007GL030401.

    • Search Google Scholar
    • Export Citation
  • Doyle, M. E., and V. R. Barros, 2002: Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J. Climate, 15 , 33943410.

    • Search Google Scholar
    • Export Citation
  • Genta, J. L., G. Perez-Iribarren, and C. R. Mechoso, 1998: A recent increasing trend in the streamflow of rivers in southeastern South America. J. Climate, 11 , 28582862.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal timescales. Science, 302 , 10271030.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Giménez, A., and W. E. Baethgen, 2006: SIMERPA: An information and monitoring system for assessing climate risks in agricultural production of Paraguay and Uruguay (in Spanish). Inst. Nac. Invest. Agropecu., 162 , 145.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2003: The El Niño impact on the summer monsoon in Brazil: Regional processes versus remote influences. J. Climate, 16 , 263280.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and M. T. Zilli, 2009: Interannual variability and seasonal evolution of summer monsoon rainfall in South America. J. Climate, 22 , 22572275.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., V. R. Barros, and M. E. Doyle, 2000: Climate variability in southern South America associated with El Niño and La Niña events. J. Climate, 13 , 3558.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., E. J. D. Campos, and F. Molteni, 2003: Atmospheric response to South Atlantic SST dipole. Geophys. Res. Lett., 30 , 1864. doi:10.1029/2003GL017829.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., and Coauthors, 2006: Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Climate, 19 , 14901512.

    • Search Google Scholar
    • Export Citation
  • Held, I., T. Delworth, J. Lu, K. L. Findell, and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102 , 1789117896.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, J. Eischeid, and A. Phillips, 2006: Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate, 19 , 39894008.

    • Search Google Scholar
    • Export Citation
  • Huang, H., R. Seager, and Y. Kushnir, 2005: The 1976/77 transition in precipitation over the Americas and the influence of tropical SST. Climate Dyn., 24 , 721740.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature, 1856–1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2 , 12391252.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1999: Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP–NCAR reanalyses. J. Climate, 12 , 28082830.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247268.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal mean circulation. J. Climate, 19 , 276287.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and Coauthors, 2004: An observed trend in central South American precipitation. J. Climate, 17 , 43574367.

  • Magrin, G. O., M. I. Travasso, and G. R. Rodriguez, 2005: Changes in climate and crop production during the 20th century in Argentina. Climatic Change, 72 , 229249.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126 , 15811596.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. N. Paegle, 2001: The Pacific-South American modes and their downstream effects. Int. J. Climatol., 21 , 12111229.

  • Paegle, J. N., and K. C. Mo, 2002: Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J. Climate, 15 , 13891407.

    • Search Google Scholar
    • Export Citation
  • Pezzi, L. P., and I. F. A. Cavalcanti, 2001: The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: A numerical study. Climate Dyn., 17 , 205212.

    • Search Google Scholar
    • Export Citation
  • Pisciottano, G., A. Díaz, G. Cazes, and C. R. Mechoso, 1994: El Niño–Southern Oscillation impact on rainfall in Uruguay. J. Climate, 7 , 12861302.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and C. R. Mechoso, 1998: Interannual and decadal cycles in river flows of southeastern South America. J. Climate, 11 , 25702581.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and C. R. Mechoso, 2000: Interannual and interdecadal variability of the South Atlantic convergence zone. Mon. Wea. Rev., 128 , 29472957.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., H. Hauschild, W. Rueth, and U. Schneider, 1994: Terrestrial precipitation analysis: Operational analysis and required density of point measurements. Global Precipitation and Climate Change, M. Desbois and F. Desalmond, Eds., Springer Verlag, 173–186.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., T. Fuchs, A. Meyer-Christoffer, and B. Rudolf, 2008: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre Tech. Rep., 12 pp.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004a: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17 , 485503.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004b: On the cause of the 1930s Dust Bowl. Science, 303 , 18551859.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16 , 29602978.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. Ting, H. P. Huang, and J. Velez, 2005a: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131 , 15011527.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005b: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18 , 40684091.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, M. Ting, M. A. Cane, N. Naik, and J. Velez, 2008: Would advance knowledge of 1930s SSTs have allowed prediction of the Dust Bowl drought? J. Climate, 21 , 32613281.

    • Search Google Scholar
    • Export Citation
  • Seager, R., A. Tzanova, and J. Nakamura, 2009a: Drought in the southeastern United States: Causes, variability over the last millennium, and the potential for future hydroclimate change. J. Climate, 22 , 50215045.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2009b: Mexican drought: An observational, modeling and tree ring study of variability and climate change. Atmósfera, 22 , 131.

    • Search Google Scholar
    • Export Citation
  • Silvestri, G., and C. Vera, 2003: Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett., 30 , 2115. doi:10.1029/2003GL018277.

    • Search Google Scholar
    • Export Citation
  • Silvestri, G., and C. Vera, 2009: Nonstationary impacts of the southern annular mode on Southern Hemisphere climate. J. Climate, 22 , 61426148.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., and I. Wainer, 2008: The impact of the subtropical South Atlantic SST on South American precipitation. Ann. Geophys., 26 , 34573476.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22 , 14691481.

    • Search Google Scholar
    • Export Citation
  • Trzaska, S., A. W. Robertson, J. D. Farrara, and C. R. Mechoso, 2007: South Atlantic variability arising from air–sea coupling: Local mechanisms and tropical–subtropical interactions. J. Climate, 20 , 33453365.

    • Search Google Scholar
    • Export Citation
  • Vera, C., G. Silvestri, B. Liebmann, and P. González, 2006: Climate change scenarios for seasonal precipitation in South America from the IPCC-AR4 models. Geophys. Res. Lett., 33 , L13707. doi:10.1029/2006GL025759.

    • Search Google Scholar
    • Export Citation
  • Viglizzo, E., and F. C. Frank, 2006: Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quat. Int., 158 , 122126.

    • Search Google Scholar
    • Export Citation
  • Viglizzo, E., Z. E. Roberto, F. Lértora, E. López Gay, and J. Bernardos, 1997: Climate and land-use change in field-crop ecosystems of Argentina. Agric. Ecosyst. Environ., 66 , 6170.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 553 139 11
PDF Downloads 337 100 10