Improved Middle Atmosphere Climate and Forecasts in the ECMWF Model through a Nonorographic Gravity Wave Drag Parameterization

Andrew Orr European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Andrew Orr in
Current site
Google Scholar
PubMed
Close
,
Peter Bechtold European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Peter Bechtold in
Current site
Google Scholar
PubMed
Close
,
John Scinocca Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by John Scinocca in
Current site
Google Scholar
PubMed
Close
,
Manfred Ern Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Manfred Ern in
Current site
Google Scholar
PubMed
Close
, and
Marta Janiskova European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Marta Janiskova in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In model cycle 35r3 (Cy35r3) of the ECMWF Integrated Forecast System (IFS), the momentum deposition from small-scale nonorographic gravity waves is parameterized by the Scinocca scheme, which uses hydrostatic nonrotational wave dynamics to describe the vertical evolution of a broad, constant, and isotropic spectrum of gravity waves emanating from the troposphere. The Cy35r3 middle atmosphere climate shows the following: (i) an improved representation of the zonal-mean circulation and temperature structure; (ii) a realistic parameterized gravity wave drag; (iii) a reasonable stationary planetary wave structure and stationary wave driving in July and an underestimate of the generation of stationary wave activity in the troposphere and stationary wave driving in January; (iv) an improved representation of the tropical variability of the stratospheric circulation, although the westerly phase of the semiannual oscillation is missing; and (v) a realistic horizontal distribution of momentum flux in the stratosphere. By contrast, the middle atmosphere climate is much too close to radiative equilibrium when the Scinocca scheme is replaced by Rayleigh friction, which was the standard method of parameterizing the effects of nonorographic gravity waves in the IFS prior to Cy35r3. Finally, there is a reduction in Cy35r3 short-range high-resolution forecast error in the upper stratosphere.

* Current affiliation: British Antarctic Survey, Cambridge, United Kingdom

Corresponding author address: Dr. Peter Bechtold, ECMWF, Shinfield Rd., Reading, RG2 9AX, United Kingdom. Email: peter.bechtold@ecmwf.int

Abstract

In model cycle 35r3 (Cy35r3) of the ECMWF Integrated Forecast System (IFS), the momentum deposition from small-scale nonorographic gravity waves is parameterized by the Scinocca scheme, which uses hydrostatic nonrotational wave dynamics to describe the vertical evolution of a broad, constant, and isotropic spectrum of gravity waves emanating from the troposphere. The Cy35r3 middle atmosphere climate shows the following: (i) an improved representation of the zonal-mean circulation and temperature structure; (ii) a realistic parameterized gravity wave drag; (iii) a reasonable stationary planetary wave structure and stationary wave driving in July and an underestimate of the generation of stationary wave activity in the troposphere and stationary wave driving in January; (iv) an improved representation of the tropical variability of the stratospheric circulation, although the westerly phase of the semiannual oscillation is missing; and (v) a realistic horizontal distribution of momentum flux in the stratosphere. By contrast, the middle atmosphere climate is much too close to radiative equilibrium when the Scinocca scheme is replaced by Rayleigh friction, which was the standard method of parameterizing the effects of nonorographic gravity waves in the IFS prior to Cy35r3. Finally, there is a reduction in Cy35r3 short-range high-resolution forecast error in the upper stratosphere.

* Current affiliation: British Antarctic Survey, Cambridge, United Kingdom

Corresponding author address: Dr. Peter Bechtold, ECMWF, Shinfield Rd., Reading, RG2 9AX, United Kingdom. Email: peter.bechtold@ecmwf.int

Save
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56 , 41674182.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and K. H. Rosenlof, 2003: Gravity-wave forcing in the stratosphere: Observational constraints from the Upper Atmosphere Research Satellite and implications for parameterization in global models. J. Geophys. Res., 108 , 4597. doi:10.1029/2003JD003373.

    • Search Google Scholar
    • Export Citation
  • Allen, S. J., and R. A. Vincent, 1995: Gravity waves in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100 , 13271350.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysical Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294 , 581584.

  • Baldwin, M. P., H. J. Edmon, and J. R. Holton, 1985: A diagnostic study of eddy-mean flow interactions during FGGE SOP-1. J. Atmos. Sci., 42 , 18381845.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110 , D10108. doi:10.1029/2004JD005504.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1984: The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atmos. Sci., 41 , 11321142.

  • Boville, B. A., 1986: Wave–mean flow interactions in a general circulation model of the troposphere and stratosphere. J. Atmos. Sci., 43 , 17111725.

    • Search Google Scholar
    • Export Citation
  • Brewer, A., 1949: Evidence for a world circulation provided by measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75 , 351363.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., 2006: Resolution dependence of orographic torques. Quart. J. Roy. Meteor. Soc., 130 , 30293046.

  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59 , 923941.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., and R. E. Good, 1986: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res., 91 , 27422748.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 , 2605326076.

  • Eckermann, S. D., and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286 , 15341537.

  • Eckermann, S. D. Coauthors 2009: High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. J. Atmos. Sol. Terr. Phys., 71 , 531551.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. J. Alexander, and C. D. Warner, 2004: Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res., 109 , D20103. doi:10.1029/2004JD004752.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, and C. D. Warner, 2005: A comparison between CRISTA satellite data and Warner and McIntyre gravity wave parameterization scheme: Horizontal and vertical wavelength filtering of gravity wave momentum flux. Adv. Space Res., 35 , 20172023.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, and C. D. Warner, 2006: Some experimental constraints for spectral parameters used in the Warner and McIntyre gravity wave parameterization scheme. Atmos. Chem. Phys., 6 , 43614381.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci., 49 , 111127.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and T. E. VanZandt, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part I: Energy dissipation, acceleration, and constraints. J. Atmos. Sci., 50 , 36853694.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90 , 38503868.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51 , 22382245.

    • Search Google Scholar
    • Export Citation
  • Gardner, C. S., M. S. Miller, and C. H. Liu, 1989: Rayleigh lidar observations of gravity wave activity in the upper stratosphere at Urbana, Illinois. J. Atmos. Sci., 46 , 18381854.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29 , 1245. doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, J. D. Mahlman, and L. J. Umscheid, 1995: Climatology of the SKYHI troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 52 , 542.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, and R. S. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci., 56 , 38293846.

    • Search Google Scholar
    • Export Citation
  • Han, Y., F. Weng, Q. Liu, and P. Van Delst, 2007: A fast radiative transfer model for SSMIS upper atmosphere sounding channels. J. Geophys. Res., 112 , D11121. doi:10.1029/2006JD008208.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean forces. J. Atmos. Sci., 48 , 651678.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., and F. Vial, 2001: A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons: 2. Gravity waves. J. Geophys. Res., 106 , 2274522761.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1991: The saturation of gravity waves in the middle atmosphere. Part I: Critique of linear-instability theory. J. Atmos. Sci., 48 , 13481359.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol. Terr. Phys., 59 , 371386.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra and implementation. J. Atmos. Sol. Terr. Phys., 59 , 387400.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39 , 791799.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., S. D. Eckermann, D. L. Wu, K. Hocke, B. Wang, J. Ma, and Y. Zhang, 2005: Seasonal variation of gravity wave sources from satellite observations. Adv. Space Res., 35 , 19251932.

    • Search Google Scholar
    • Export Citation
  • Jung, T. Coauthors 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136 , 11451160.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., M. Matricardi, D. Dee, and S. Uppala, 2009: Toward a consistent reanalysis of the upper stratosphere based on radiance measurements from SSU and AMSU-A. Quart. J. Roy. Meteor. Soc., 135 , 20862099.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., J. D. Doyle, R. Plougonven, M. A. Shapiro, and R. D. Sharman, 2008: Observations and numerical simulations of inertia–gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61 , 26922706.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , 97079714.

  • Lindzen, R. S., and J. R. Holton, 1968: Theory of the stratospheric quasi-biennial oscillation. J. Atmos. Sci., 25 , 10951107.

  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123 , 101127.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., N. A. McFarlane, and C. McLandress, 1997: Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J. Geophys. Res., 102 , 2575125762.

    • Search Google Scholar
    • Export Citation
  • Marks, C. J., 1989: Some features of the climatology of the middle atmosphere revealed by Nimbus 5 and 6. J. Atmos. Sci., 46 , 24852508.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., and J. F. Scinocca, 2005: The GCM response to current parameterizations of nonorographic gravity wave drag. J. Atmos. Sci., 62 , 23942413.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J. Geophys. Res., 100 , 2584125853.

    • Search Google Scholar
    • Export Citation
  • Meyer, W. D., 1970: A diagnostic numerical study of the semiannual variation of the zonal wind in the tropical stratosphere and mesosphere. J. Atmos. Sci., 27 , 820830.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112 , 10011039.

    • Search Google Scholar
    • Export Citation
  • Preusse, P., A. Dörnbrack, S. D. Eckermann, M. Riese, B. Schaeler, J. T. Bacmeister, D. Broutman, and K. U. Grossmann, 2002: Space-based measurements of stratospheric mountain waves by CRISTA. 1. Sensitivity, analysis method and a case study. J. Geophys. Res., 107 , 8178. doi:10.1029/2001JD000699.

    • Search Google Scholar
    • Export Citation
  • Pulido, M., and J. Thuburn, 2006: Gravity-wave drag estimation from global analyses using variational data assimilation principles. II: Case study. Quart. J. Roy. Meteor. Soc., 132 , 15271543.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 1988: The seasonal evolution of planetary waves in the Southern Hemisphere stratosphere and troposphere. Quart. J. Roy. Meteor. Soc., 114 , 13851409.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J. Coauthors 2004: The SPARC intercomparison of middle-atmosphere climatologies. J. Climate, 17 , 9861003.

  • Ray, E. A., M. J. Alexander, and J. R. Holton, 1998: An analysis of the structure and forcing of the equatorial semiannual oscillation in zonal wind. J. Geophys. Res., 103 , 17591774.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and T. J. Dunkerton, 1997: Estimates of momentum flux associated with equatorial Kelvin and gravity waves. J. Geophys. Res., 102 , 2624726261.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, D. Stainforth, W. Norton, and J. Austin, 2000: Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys. Res. Lett., 27 , 34813484.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59 , 14731489.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2002: The effect of back reflection in the parameterization of nonorographic gravity wave drag. J. Meteor. Soc. Japan, 80 , 939962.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60 , 667682.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8 , 70557074.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and T. G. Shepherd, 2007: Angular momentum conservation and gravity wave drag parameterization: implications for climate models. J. Atmos. Sci., 64 , 190203.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and T. A. Shaw, 2004: The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J. Atmos. Sci., 61 , 28992908.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., D. C. Fritts, and T. E. VanZandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44 , 14041410.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 1996: On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere. J. Atmos. Sci., 53 , 32133235.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 2001: An ultra-simple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58 , 18371857.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., and T. J. Duck, 1999: Enhanced Arctic stratospheric gravity wave activity above a tropospheric jet. Geophys. Res. Lett., 26 , 24532456.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 934 296 16
PDF Downloads 624 156 16