Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate

G. M. Martin Met Office, Exeter, United Kingdom

Search for other papers by G. M. Martin in
Current site
Google Scholar
PubMed
Close
,
S. F. Milton Met Office, Exeter, United Kingdom

Search for other papers by S. F. Milton in
Current site
Google Scholar
PubMed
Close
,
C. A. Senior Met Office, Exeter, United Kingdom

Search for other papers by C. A. Senior in
Current site
Google Scholar
PubMed
Close
,
M. E. Brooks Met Office, Exeter, United Kingdom

Search for other papers by M. E. Brooks in
Current site
Google Scholar
PubMed
Close
,
S. Ineson Met Office, Exeter, United Kingdom

Search for other papers by S. Ineson in
Current site
Google Scholar
PubMed
Close
,
T. Reichler University of Utah, Salt Lake City, Utah

Search for other papers by T. Reichler in
Current site
Google Scholar
PubMed
Close
, and
J. Kim University of Utah, Salt Lake City, Utah

Search for other papers by J. Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The reduction of systematic errors is a continuing challenge for model development. Feedbacks and compensating errors in climate models often make finding the source of a systematic error difficult. In this paper, it is shown how model development can benefit from the use of the same model across a range of temporal and spatial scales. Two particular systematic errors are examined: tropical circulation and precipitation distribution, and summer land surface temperature and moisture biases over Northern Hemisphere continental regions. Each of these errors affects the model performance on time scales ranging from a few days to several decades. In both cases, the characteristics of the long-time-scale errors are found to develop during the first few days of simulation, before any large-scale feedbacks have taken place. The ability to compare the model diagnostics from the first few days of a forecast, initialized from a realistic atmospheric state, directly with observations has allowed physical deficiencies in the physical parameterizations to be identified that, when corrected, lead to improvements across the full range of time scales. This study highlights the benefits of a seamless prediction system across a wide range of time scales.

Corresponding author address: Gill Martin, Met Office Hadley Centre, FitzRoy Rd., Exeter, Devon EX1 3PB, United Kingdom. Email: gill.martin@metoffice.gov.uk

Abstract

The reduction of systematic errors is a continuing challenge for model development. Feedbacks and compensating errors in climate models often make finding the source of a systematic error difficult. In this paper, it is shown how model development can benefit from the use of the same model across a range of temporal and spatial scales. Two particular systematic errors are examined: tropical circulation and precipitation distribution, and summer land surface temperature and moisture biases over Northern Hemisphere continental regions. Each of these errors affects the model performance on time scales ranging from a few days to several decades. In both cases, the characteristics of the long-time-scale errors are found to develop during the first few days of simulation, before any large-scale feedbacks have taken place. The ability to compare the model diagnostics from the first few days of a forecast, initialized from a realistic atmospheric state, directly with observations has allowed physical deficiencies in the physical parameterizations to be identified that, when corrected, lead to improvements across the full range of time scales. This study highlights the benefits of a seamless prediction system across a wide range of time scales.

Corresponding author address: Gill Martin, Met Office Hadley Centre, FitzRoy Rd., Exeter, Devon EX1 3PB, United Kingdom. Email: gill.martin@metoffice.gov.uk

Save
  • Ackerman, T., and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3844.

  • Allan, R., J. Lindesay, and D. E. Parker, 1996: El Nino–Southern Oscillation and Climatic Variability. CSIRO Publishing, 416 pp.

  • Allan, R., A. Slingo, S. F. Milton, and I. Culverwell, 2005: Exploitation of geostationary earth radiation budget data using simulations from a numerical weather prediction model: Methodology and data validation. J. Geophys. Res., 110 , D14111. doi:10.1029/2004JD005698.

    • Search Google Scholar
    • Export Citation
  • Allan, R., A. Slingo, S. F. Milton, and M. Brooks, 2007: Evaluation of the Met Office global forecast model using Geostationary Earth Radiation Budget (GERB) data. Quart. J. Roy. Meteor. Soc., 133 , 19932010.

    • Search Google Scholar
    • Export Citation
  • Bartalis, Z., W. Wagner, V. Naeimi, S. Hasenauer, K. Scipal, H. Bonekamp, J. Figa, and C. Anderson, 2007: Initial soil moisture retrievals from the METOP-A Advanced SCATterometer (ASCAT). Geophys. Res. Lett., 34 , L20401. doi:10.1029/2007GL031088.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., O. Boucher, J. Haywood, C. Johnson, A. Jones, J. Rae, and S. Woodward, 2007: Improved representation of aerosols for HadGEM2. Hadley Centre Tech. Note 73, Met Office Hadley Centre. [Available online at http://www.metoffice.gov.uk/publications/HCTN/index.html].

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and P. E. Maisey, 2002: A physically based soil moisture nudging scheme. Hadley Centre Tech. Note 35, Met Office. [Available online at http://www.metoffice.gov.uk/publications/HCTN/index.html].

    • Search Google Scholar
    • Export Citation
  • Betts, A., and C. Jakob, 2002: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res., 107 , 4732. doi:10.1029/2002JD002264.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. M. Cox, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol., 78 , 157175.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., M. A. Ringer, and A. Jones, 2008: Evaluation of the surface radiation budget in the atmospheric component of the Hadley Centre Global Environmental Model (HadGEM1). J. Climate, 21 , 47234748.

    • Search Google Scholar
    • Export Citation
  • Bowler, N., A. Arribas, K. Mylne, and K. Robertson, 2007a: Met Office Global and Regional Ensemble Prediction System (MOGREPS). Part I: System description. Forecasting Research Tech. Rep. 497, Met Office, 14 pp.

    • Search Google Scholar
    • Export Citation
  • Bowler, N., A. Arribas, K. Mylne, K. Robertson, S. John, and T. Legg, 2007b: Met Office Global and Regional Ensemble Prediction System (MOGREPS). Part II: Case studies, performance and verification. Forecasting Research Tech. Rep. 498, Met Office, 14 pp.

    • Search Google Scholar
    • Export Citation
  • Brown, A., and A. Grant, 1997: Non-local mixing of momentum in the convective boundary layer. Bound.-Layer Meteor., 84 , 122.

  • Brown, A., R. Beare, J. Edwards, A. Lock, S. Keogh, S. Milton, and D. Walters, 2008: Upgrades to the boundary layer scheme in the Met Office Numerical Weather Prediction model. Bound.-Layer Meteor., 128 , 117132.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, P. T. Haertel, and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J. Coauthors 2008: Evaluation of the HadGEM2 model. Met Office Hadley Centre Tech. Note 74, Met Office. [Available online at http://www.metoffice.gov.uk/publications/HCTN/index.html].

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15 , 183203.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78 , 137156.

    • Search Google Scholar
    • Export Citation
  • Cramer, W. Coauthors 1999: Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Global Change Biol., 5 , 115.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U. Coauthors 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis. J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Cullen, M., 1993: The Unified Forecast Climate Model. Meteor. Mag., 122 , 8194.

  • Cusack, S., A. Slingo, J. Edwards, and M. Wild, 1998: The radiative impact of a simple aerosol climatology on the Hadley Centre climate model. Quart. J. Roy. Meteor. Soc., 124 , 25172526.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. Cullen, M. H. Mawson, A. Staniforth, A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131 , 17591782.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J-Y. Grandpeix, J-M. Piriou, J-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130 , 30553079.

    • Search Google Scholar
    • Export Citation
  • Derwent, R. G., W. J. Collins, M. E. Jenkin, C. E. Johnson, and D. S. Stevenson, 2003: The global distribution of secondary particulate matter in a 3-d Lagrangian chemistry transport model. J. Atmos. Chem., 44 , 5795.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., 2007: Oceanic latent heat fluxes: consistency with the atmospheric hydrological and energy cycles and general circulation modeling. J. Geophys. Res., 112 , D06115. doi:10.1029/2006JD007324.

    • Search Google Scholar
    • Export Citation
  • Essery, R., M. Best, and P. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note 30, Hadley Centre, Met Office. [Available online at http://www.metoffice.gov.uk/publications/HCTN/index.html].

    • Search Google Scholar
    • Export Citation
  • Gates, W. L. Coauthors 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80 , 2955.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113 , D06104. doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and S. Allen, 1991: The effect of convective downdraughts upon NWP and climate simulations. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 122–123.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., R. Kershaw, and P. M. Inness, 1997: Parametrization of momentum transport by convection. ii: Tests in single column and general circulation models. Quart. J. Roy. Meteor. Soc., 123 , 11531183.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., D. J. Shutts, and J. R. Mitchell, 1998: A new gravity wave drag scheme incorporating anisotropic orography and low level wave breaking: Impact upon the climate of the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 124 , 463493.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Nino-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Guilyardi, E., P. Delecluse, S. Guildi, and A. Navarra, 2003: Mechanisms for Enso phase change in a coupled GCM. J. Climate, 16 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Nino in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90 , 325340.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze, 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41 , 113121.

    • Search Google Scholar
    • Export Citation
  • Houldcroft, C., W. Grey, M. Barnsley, C. Taylor, S. Los, and P. North, 2009: New vegetation albedo parameters and global fields of background albedo derived from MODIS for use in a climate model. J. Hydrometeor., 10 , 183198.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., R. Adler, M. Morrisey, D. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36 , 301326.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., G. A. Meehl, D. Bader, T. L. Delworth, B. Kirtman, and B. Wielicki, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90 , 18191832.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C. Coauthors 2006: The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations. J. Climate, 19 , 13271353.

  • Jones, R. G., J. M. Murphy, D. C. Hassell, and M. J. Woodage, 2006: A high resolution atmospheric GCM for the generation of regional climate scenarios. Hadley Centre Tech. Note 63, Met Office Hadley Centre. [Available online at http://www.metoffice.gov.uk/publications/HCTN/index.html].

    • Search Google Scholar
    • Export Citation
  • Klinker, E., and P. D. Sardesmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49 , 608627.

    • Search Google Scholar
    • Export Citation
  • Koster, R. Coauthors 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128 , 31873199.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C. Coauthors 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126 , 29913012.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30 , 15341547.

  • Martin, G. M., M. R. Bush, A. R. Brown, A. P. Lock, and R. N. S. Smith, 2000: A new boundary layer mixing scheme. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev., 128 , 32003217.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19 , 12741301.

    • Search Google Scholar
    • Export Citation
  • Milton, S. F., and C. A. Wilson, 1996: The impact of parameterized subgrid-scale orographic forcing on systematic errors in a global NWP model. Mon. Wea. Rev., 124 , 20232045.

    • Search Google Scholar
    • Export Citation
  • Milton, S. F., and P. Earnshaw, 2007: Evaluation of surface water and energy cycles in the Met Office Global NWP model using CEOP data. J. Meteor. Soc. Japan, 85 , 4372.

    • Search Google Scholar
    • Export Citation
  • Milton, S. F., I. Culverwell, and D. Cameron, 2001: Validation of parametrized forcing in NWP and climate models. Proc. ECMWF Seminar: Key Issues in the Parametrization of Subgrid Physical Processes, Shinfield Park, Reading, United Kingdom, ECMWF, 253–274.

    • Search Google Scholar
    • Export Citation
  • Milton, S. F., G. Greed, M. Brooks, J. Haywood, B. Johnson, R. Allan, A. Slingo, and W. Grey, 2008: Modeled and observed atmospheric radiation balance during the West African dry season: Role of mineral dust, biomass burning aerosol, and surface albedo. J. Geophys. Res., 113 , D00C02. doi:10.1029/2007JD009741.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., M. D. King, S. Platnick, C. B. Schaaf, and F. Gao, 2005: Spatially complete global spectral surface albedos: Value-added datasets derived from terra MODIS land products. IEEE Trans. Geosci. Remote Sens., 43 , 144158.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modeling uncertainties in a large ensemble of climate change simulations. Nature, 430 , 768772.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , (C7). 1426114290.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • Petch, J., M. Willett, R. Wong, and S. Woolnough, 2007: Modelling suppressed and active convection. Comparing a numerical weather prediction, cloud resolving and single column model. Quart. J. Roy. Meteor. Soc., 133 , 10871100.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J. Coauthors 2004: Evaluating parameterizations in General Circulation Models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85 , 19031915.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A. Coauthors 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Rawlins, F., S. Ballard, K. Bovis, A. Clayton, D. Li, G. Inverarity, A. Lorenc, and T. Payne, 2007: The Met Office global 4-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133 , 347362.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008a: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89 , 303311.

  • Reichler, T., and J. Kim, 2008b: Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model. J. Geophys. Res., 113 , D05106. doi:10.1029/2007JD009278.

    • Search Google Scholar
    • Export Citation
  • Ringer, M. A. Coauthors 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of variability and regional climate. J. Climate, 19 , 13021326.

    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Search Google Scholar
    • Export Citation
  • Rodell, M. Coauthors 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133 , 129146.

    • Search Google Scholar
    • Export Citation
  • Savage, N., S. Milton, D. Walters, and J. Heming, 2006: An assessment of the impact of new physical parametrisations on the performance of the Global Unified Model in THORPEX 15-day forecasts. Forecasting Research Tech. Rep. 496, Met Office, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, D. Stainforth, W. Norton, and J. Austin, 2000: Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys. Res. Lett., 27 , 34813484.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L. Coauthors 2009: U.K.-HiGEM: The new U.K. high-resolution global environment model—Model description and basic evaluation. J. Climate, 22 , 18611896.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M. Coauthors 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the atmospheric model intercomparison project. J. Climate, 9 , 27272750.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L. Coauthors 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Titley, H., N. Savage, R. Swinbank, and S. Thompson, 2008: Comparison between Met Office and ECMWF medium-range ensemble forecast systems. Forecasting Research Tech. Rep. 512, Met Office, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Uno, I. Coauthors 2006: Dust model intercomparison (DMIP) study over Asia: Overview. J. Geophys. Res., 111 , D12213. doi:10.1029/2005JD006575.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M. Coauthors 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Van Oldenborgh, Y. P., S. Y. Philip, and M. Collins, 2005: El Nino in a changing climate: A multi-model study. Ocean Sci., 1 , 8195.

  • Wagner, W., G. Blöschi, P. Pampaloni, J-C. Calvet, B. Bizzarri, J-P. Wigneron, and Y. Kerr, 2007: Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Nord. Hydrol., 38 , 120.

    • Search Google Scholar
    • Export Citation
  • Webster, P., and R. Lucas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Willett, M., P. Bechtold, J. Petch, S. Milton, D. Williamson, and S. Woolnough, 2008: Modelling suppressed and active convection. Comparisons between three global atmospheric models. Quart. J. Roy. Meteor. Soc., 134 , 18811896.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. E. Brooks, 2008: Initial tendencies of cloud regimes in the Met Office unified model. J. Climate, 21 , 833840.

    • Search Google Scholar
    • Export Citation
  • Woodward, S., 2001: Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J. Geophys. Res., 106 , D1618155. doi:10.1029/2000JD900795.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129 , 784801.

  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43 , 136.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1732 873 33
PDF Downloads 642 160 15