Understanding the Predictability of East Asian Summer Monsoon from the Reproduction of Land–Sea Thermal Contrast Change in AMIP-Type Simulation

Tianjun Zhou LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Tianjun Zhou in
Current site
Google Scholar
PubMed
Close
and
Liwei Zou LASG, Institute of Atmospheric Physics, and Graduate University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Liwei Zou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies on the predictability of East Asian summer monsoon circulation based on SST-constrained Atmospheric Model Intercomparison Project (AMIP)-type simulations show that this phenomenon is reproduced with lower skill than other monsoon patterns. The authors examine the reason in terms of the predictability of land–sea thermal contrast change. In the observation, a stronger monsoon circulation is dominated by a tropospheric warming over East Asian continent and a cooling over the tropical western Pacific and North Pacific, indicating an enhancement of the summertime “warmer land–colder ocean” mean state. The tropospheric cooling over the tropical western Pacific and North Pacific, and the tropospheric warming over East Asian continent are reproducible in AMIP-type simulations, although there are biases over both the North Pacific and East Asia. The tropospheric temperature responses in the model indicate a reasonable predictability of the meridional land–sea thermal contrast; the zonal land–sea thermal contrast change is also predictable but shows bias over the region north to 25°N in North Pacific. The reproducibility of the meridional thermal contrast is higher than that of the zonal thermal contrast. An examination of the predictability of two commonly used monsoon indices reveals far different skills. The index defined as zonal wind shear between 850 and 200 hPa averaged over East Asia is highly predictable. The skill comes from the predictability of the meridional land–sea thermal contrast. Although the zonal thermal contrast change is mostly predictable except for the biases over the North Pacific, the monsoon index defined as zonal sea level pressure (SLP) difference across the East Asian continent and the North Pacific is unpredictable. The low skill is related to the index definition, which attaches more importance to the land SLP change. The limitation of the index in measuring the land SLP change reduces the model skill. Although regional features of monsoon precipitation changes remain a challenge for current climate models, the predictable land–sea thermal contrast change sheds light on monsoon circulation prediction.

Corresponding author address: Dr. Tianjun Zhou, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. Email: zhoutj@lasg.iap.ac.cn

Abstract

Previous studies on the predictability of East Asian summer monsoon circulation based on SST-constrained Atmospheric Model Intercomparison Project (AMIP)-type simulations show that this phenomenon is reproduced with lower skill than other monsoon patterns. The authors examine the reason in terms of the predictability of land–sea thermal contrast change. In the observation, a stronger monsoon circulation is dominated by a tropospheric warming over East Asian continent and a cooling over the tropical western Pacific and North Pacific, indicating an enhancement of the summertime “warmer land–colder ocean” mean state. The tropospheric cooling over the tropical western Pacific and North Pacific, and the tropospheric warming over East Asian continent are reproducible in AMIP-type simulations, although there are biases over both the North Pacific and East Asia. The tropospheric temperature responses in the model indicate a reasonable predictability of the meridional land–sea thermal contrast; the zonal land–sea thermal contrast change is also predictable but shows bias over the region north to 25°N in North Pacific. The reproducibility of the meridional thermal contrast is higher than that of the zonal thermal contrast. An examination of the predictability of two commonly used monsoon indices reveals far different skills. The index defined as zonal wind shear between 850 and 200 hPa averaged over East Asia is highly predictable. The skill comes from the predictability of the meridional land–sea thermal contrast. Although the zonal thermal contrast change is mostly predictable except for the biases over the North Pacific, the monsoon index defined as zonal sea level pressure (SLP) difference across the East Asian continent and the North Pacific is unpredictable. The low skill is related to the index definition, which attaches more importance to the land SLP change. The limitation of the index in measuring the land SLP change reduces the model skill. Although regional features of monsoon precipitation changes remain a challenge for current climate models, the predictable land–sea thermal contrast change sheds light on monsoon circulation prediction.

Corresponding author address: Dr. Tianjun Zhou, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. Email: zhoutj@lasg.iap.ac.cn

Save
  • Alexander, M. A. Coauthors 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Brohan, P. Coauthors 2006: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res., 111 , D12106. doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. Shukla, 1981: Predictability of monsoon. Monsoon Dynamics, J. Lighthill and R. P. Pearce, Eds., Cambridge University Press, 99–110.

    • Search Google Scholar
    • Export Citation
  • Chen, H., T. Zhou, R. B. Neale, X. Wu, and G. J. Zhang, 2010: Performance of the new NCAR CAM3.5 model in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Climate, 23 , 36573675.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and A. Navarra, 2007: Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP-type and coupled model experiments. Climate Dyn., 28 , 273. doi:10.1007/s00382-006-0183-z.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D. Coauthors 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Shukla, J. Kinter, and M. J. Rodwell, 2002: C20C: The climate of the twentieth century project. CLIVAR Exchanges, Vol. 7, No. 2, International CLIVAR Project Office, Southampton, United Kingdom, 37–39. [Available online at http://eprints.soton.ac.uk/19305/1/ex24.pdf].

    • Search Google Scholar
    • Export Citation
  • Gates, W. L. Coauthors 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80 , 19621970.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and P-P. Rong, 2006: Discrepancies between different Northern Hemisphere summer atmospheric data products. J. Climate, 19 , 12611273.

    • Search Google Scholar
    • Export Citation
  • Guo, Q. Y., 1983: The summer monsoon intensity index in East Asia and its variation. (in Chinese). Acta Geogr. Sin., 38 , 207217.

  • Han, J., and H. Wang, 2007: Interdecadal variability of the East Asian summer monsoon in an AGCM. Adv. Atmos. Sci., 24 , 808818.

  • Hu, Z., 1997: Interdecadal variability of summer climate over East Asia and its association with 500-hPa height and global sea surface temperature. J. Geophys. Res., 102D , 1940319412.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., S. Yang, and R. Wu, 2003: Long-term climate variations in China and global warming signals. J. Geophys. Res., 108 , 4614. doi:10.1029/2003JD003651.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. J. Climate, 21 , 51455153.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., and J. Matsumoto, 2004: A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960-99. J. Meteor. Soc. Japan, 82 , 951958.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E. Coauthors 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437472.

  • Kang, I-S., and J. Shukla, 2006: Dynamic seasonal prediction and predictability of the monsoon. The Asian Monsoon, B. Wang, Ed., Springer/Praxis Publishing, 585–612.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S. Coauthors 2002: Intercomparison of atmospheric GCM simulated anomalies associated with the 1997–98 El Niño. J. Climate, 15 , 27912805.

    • Search Google Scholar
    • Export Citation
  • Kim, K., A. Kitoh, and K. Ha, 2008: The SST-forced predictability of the subseasonal mode over East Asia with an atmospheric general circulation model. Int. J. Climatol., 28 , 15991606.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F. Coauthors 2009: The CLIVAR C20C project: Skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? Climate Dyn., 33 , 615627.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., G. J. Yang, and S. H. Shen, 1988: Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon. Wea. Rev., 116 , 1837.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78 , 2133.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13 , 42874309.

    • Search Google Scholar
    • Export Citation
  • Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9 , 358375.

    • Search Google Scholar
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000. Climate Dyn., 34 , 501514.

    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., and W. C. Wang, 1998: Associations between China monsoon rainfall and tropospheric jets. Quart. J. Roy. Meteor. Soc., 124 , 25972623.

    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., W. C. Wang, and A. N. Samel, 2001: Biases in AMIP simulations of the East China monsoon system. Climate Dyn., 17 , 291304.

    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., A. N. Samel, and W. C. Wang, 2002: China rainfall interannual predictability: Dependence on the annual cycle and surface anomalies. J. Climate, 15 , 25552561.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19 , 446469.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A. Coauthors 2009: The CLIVAR C20C project: Selected 20th century climate events. Climate Dyn., 33 , 603614.

  • Sperber, K. R., and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J. Climate, 9 , 27272750.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E. Coauthors 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103C , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E. Coauthors 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 296–297.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., P. M. Inness, and J. M. Slingo, 2005: The role of the basic state in the ENSO-monsoon relationship and implications for predictability. Quart. J. Roy. Meteor. Soc., 131 , 781804.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M. Coauthors 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wang, B., 2006: The Asian Monsoon. Springer/Praxis Publishing Co., 787 pp.

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13 , 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, B., I. Kang, and J. Lee, 2004: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17 , 803818.

    • Search Google Scholar
    • Export Citation
  • Wang, B. Coauthors 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32 , L15711. doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wang, B. Coauthors 2008a: Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33 , 93117. doi:10.1007/s00382-008-0460-0.

    • Search Google Scholar
    • Export Citation
  • Wang, B. Coauthors 2008b: How to measure the strength of the East Asian summer monsoon. J. Climate, 21 , 44494463.

  • Wu, R., and B. Kirtman, 2007: Regimes of seasonal air-sea interaction and implications for performance of forced simulations. Climate Dyn., 29 , 393410.

    • Search Google Scholar
    • Export Citation
  • Wu, R., Z-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16 , 37423758.

  • Wu, R., J. L. Kinter III, and B. P. Kirtman, 2005: Discrepancy of interdecadal changes in the Asian region among the NCEP–NCAR reanalysis, objective analyses, and observations. J. Climate, 18 , 30483067.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19 , 49144932.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., 2004: Role of land surface processes in monsoon development: East Asia and West Africa. J. Geophys. Res., 109 , D03105. doi:10.1029/2003JD003556.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and K-M. Lau, 1998: Influences of sea surface temperature and ground wetness on Asian summer monsoon. J. Climate, 11 , 32303246.

    • Search Google Scholar
    • Export Citation
  • Yang, S., K. M. Lau, and K. M. Kim, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15 , 306325.

    • Search Google Scholar
    • Export Citation
  • Yang, S. Coauthors 2008: Simulations and seasonal prediction of the Asian summer monsoon in the NCEP Climate Forecast System. J. Climate, 21 , 37553775.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 2007: Role of land-atmosphere interaction on Asian monsoon climate. J. Meteor. Soc. Japan, 85 , 5575.

  • Yu, R., and T. Zhou, 2007: Seasonality and three-dimensional structure of the interdecadal change in East Asian monsoon. J. Climate, 20 , 53445355.

    • Search Google Scholar
    • Export Citation
  • Yu, R. Coauthors 2000: Climatic features related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci., 17 , 503518.

  • Yu, R., B. Wang, and T. Zhou, 2004: Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett., 31 , L22212. doi:10.1029/2004GL021270.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., W. Dong, and Z. Wei, 2002: Correlation analysis of East Asia summer monsoon circulation anomaly index and land-sea temperature difference (in Chinese). Plateau Meteor., 6 , 610614.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., X. Kuang, W. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33 , L11708. doi:10.1029/2006GL026377.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Z. Li, 2002: Simulation of the east Asian summer monsoon by using a variable resolution atmospheric GCM. Climate Dyn., 19 , 167180.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110 , D08104. doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Li, and B. Wang, 2008: Ocean forcing to changes in global monsoon precipitation over the recent half century. J. Climate, 21 , 38333852.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009a: Detecting and understanding of multi-decadal variability of the East Asian Summer Monsoon – Recent progress and state of affairs. Meteor. Z., 18 , 455467.

    • Search Google Scholar
    • Export Citation
  • Zhou, T. Coauthors 2009b: The CLIVAR C20C Project: Which components of the Asian-Australian Monsoon circulation variations are forced and reproducible? Climate Dyn., 33 , 10511068.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., B. Wu, and B. Wang, 2009c: How well do atmospheric general circulation models capture the leading modes of the interannual variability of Asian–Australian Monsoon? J. Climate, 22 , 11591173.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., W. S. Lee, H. Kang, and C. K. Park, 2005: A proper monsoon index for seasonal and interannual variations of the East Asian monsoon. Geophys. Res. Lett., 32 , L02811. doi:10.1029/2004GL021295.

    • Search Google Scholar
    • Export Citation
  • Zhu, Q., J. He, and P. Wang, 1986: A study of circulation differences between East-Asian and Indian summer monsoons with their interaction. Adv. Atmos. Sci., 3 , 466477.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1005 465 41
PDF Downloads 391 117 10