Simulation of Asymmetric ENSO Transition in WCRP CMIP3 Multimodel Experiments

Masamichi Ohba Central Research Institute of Electric Power Industry, Chiba, Japan

Search for other papers by Masamichi Ohba in
Current site
Google Scholar
PubMed
Close
,
Daisuke Nohara Central Research Institute of Electric Power Industry, Chiba, Japan

Search for other papers by Daisuke Nohara in
Current site
Google Scholar
PubMed
Close
, and
Hiroaki Ueda Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

Search for other papers by Hiroaki Ueda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset, the relationships between the climatological states and transition processes of simulated ENSO are investigated. The air–sea coupled system of the observed ENSO can remain in the weak cold event for up to 2 yr, whereas those of the warm events tend to turn rapidly into a cold phase. Therefore, the authors separately investigate the simulated transition process of a warm-phase and a cold-phase ENSO in the CMIP3 models. Some of the models reproduce the features of the observed transition process of El Niño/La Niña, whereas most models fail to concurrently reproduce the process during both phases.

In the CMIP3 models, four climate models simulate well the rapid transition from El Niño to La Niña. The intensity of a rapid transition of El Niño is mainly related to the intensity of the simulated climatological precipitation over the western–central Pacific (WCP). The models that have strong WCP precipitation can simulate the rapid termination of the equatorial zonal wind in the WCP, which tends to result in the termination of El Niño phase. This relationship is not applicable for the La Niña transition phase. The simulation of La Niña persistency is related to the reflection of off-equatorial Rossby waves at the western boundary of the Pacific and the seasonal evolution of the climatological precipitation in the WCP. Differences in the transition processes between El Niño and La Niña events are fundamentally due to the nonlinear atmospheric (convective) response to SST, which originates from the distribution of climatological SST and its seasonal changes. The results of the present study indicate that a realistic simulation of the climatological state and its seasonality in the WCP are important to be able to simulate the observed transition process of the ENSO.

Corresponding author address: Masamichi Ohba, Central Research Institute of Electric Power Industry (CRIEPI), Environmental Science Research Laboratory, 1646 Abiko, Abiko-shi, Chiba, 270-1194, Japan. Email: oba-m@criepi.denken.or.jp

Abstract

Based on the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset, the relationships between the climatological states and transition processes of simulated ENSO are investigated. The air–sea coupled system of the observed ENSO can remain in the weak cold event for up to 2 yr, whereas those of the warm events tend to turn rapidly into a cold phase. Therefore, the authors separately investigate the simulated transition process of a warm-phase and a cold-phase ENSO in the CMIP3 models. Some of the models reproduce the features of the observed transition process of El Niño/La Niña, whereas most models fail to concurrently reproduce the process during both phases.

In the CMIP3 models, four climate models simulate well the rapid transition from El Niño to La Niña. The intensity of a rapid transition of El Niño is mainly related to the intensity of the simulated climatological precipitation over the western–central Pacific (WCP). The models that have strong WCP precipitation can simulate the rapid termination of the equatorial zonal wind in the WCP, which tends to result in the termination of El Niño phase. This relationship is not applicable for the La Niña transition phase. The simulation of La Niña persistency is related to the reflection of off-equatorial Rossby waves at the western boundary of the Pacific and the seasonal evolution of the climatological precipitation in the WCP. Differences in the transition processes between El Niño and La Niña events are fundamentally due to the nonlinear atmospheric (convective) response to SST, which originates from the distribution of climatological SST and its seasonal changes. The results of the present study indicate that a realistic simulation of the climatological state and its seasonality in the WCP are important to be able to simulate the observed transition process of the ENSO.

Corresponding author address: Masamichi Ohba, Central Research Institute of Electric Power Industry (CRIEPI), Environmental Science Research Laboratory, 1646 Abiko, Abiko-shi, Chiba, 270-1194, Japan. Email: oba-m@criepi.denken.or.jp

Save
  • AchutaRao, K., and K. Sperber, 2002: Simulation of the El Niño Southern Oscillation: Results from the coupled model intercomparison project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • AchutaRao, K., and K. Sperber, 2006: ENSO simulations in coupled ocean–atmosphere models: Are the current models better? Climate Dyn., 27 , 116.

    • Search Google Scholar
    • Export Citation
  • An, S-I., Y-G. Ham, J-S. Kug, F-F. Jin, and I-S. Kang, 2005: El Niño–La Niña asymmetry in the coupled model intercomparison project simulations. J. Climate, 18 , 26172627.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S-P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18 , 302319.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J-P., S. Cravatte, and C. Menkes, 2003: Reflected and locally wind-forced interannual equatorial Kelvin waves in the western Pacific Ocean. J. Geophys. Res., 108 , 3311. doi:10.1029/2002JC001760.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15 , 274298.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238 , 657659.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E. Coauthors 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17 , 46234629.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90 , 325340.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., D. B. Stephenson, and K. R. Sperber, 2003: Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dyn., 20 , 241256.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1999: On the termination of El Niño. Geophys. Res. Lett., 26 , 15931596.

  • Hoerling, M. P., and A. Kumar, 2003: The perfect ocean for drought. Science, 299 , 691694.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and T-Y. Xu, 2001: Robustness of the nonlinear atmospheric response to opposite phases of ENSO. J. Climate, 14 , 12771293.

    • Search Google Scholar
    • Export Citation
  • Horii, T., and K. Hanawa, 2004: A relationship between timing of El Niño onset and subsequent evolution. Geophys. Res. Lett., 31 , L06304. doi:10.1029/2003GL019239.

    • Search Google Scholar
    • Export Citation
  • Izumo, T. Coauthors 2010: Influence of the state of the Indian Ocean Dipole on following year’s El Niño. Nat. Geosci., 3 , 168172.

  • Jin, F-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Joseph, R., and S. Nigam, 2006: ENSO evolution and teleconnections in IPCC’s 20th century climate simulations: Realistic representation? J. Climate, 19 , 43604377.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S., and J-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107 , 4372. doi:10.1029/2001JD000393.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29 , 2125. doi:10.1029/2002GL015924.

  • Kim, D., J-S. Kug, I-S. Kang, F-F. Jin, and A. T. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31 , 213226. doi:10.1007/s00382-007-0348-4.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., and I-S. Kang, 2006: Interactive feedback between the Indian Ocean and ENSO. J. Climate, 19 , 17841801.

  • Lengaigne, M., and G. Vecchi, 2009: Contrasting the termination of moderate and extreme El Niño events in coupled GCM. Climate Dyn., 35 , 299313. doi:10.1007/s00382-009-0562-3.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20 , 44974525.

  • McPhaden, M. J., and X. Zhang, 2009: Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett., 36 , L13703. doi:10.1029/2009GL038774.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., P. R. Gent, J. M. Arblaster, B. L. Otto-Bliesner, E. C. Brady, and A. Craig, 2001: Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dyn., 17 , 515526.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., and A. Dai, 2004: The spatial and temporal structure of ENSO nonlinearity. J. Climate, 17 , 30263036.

  • Nagura, M., K. Ando, and K. Mizuno, 2008: Pausing of the ENSO cycle: A case study from 1998 to 2002. J. Climate, 21 , 342363.

  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21 , 59045924.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2007: An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85 , 335348.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2009a: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22 , 177192.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2009b: Seasonally different response of the Indian Ocean to the remote forcing of El Niño: Linking the dynamics and thermodynamics. SOLA, 5 , 176179. doi:10.2151/sola.2009-045.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23 , 58265843.

  • Ose, T., and O. Arakawa, 2009: Characteristics of the CMIP3 models simulating realistic response of tropical western Pacific precipitation to Niño3 SST variability. J. Meteor. Soc. Japan, 87 , 807819.

    • Search Google Scholar
    • Export Citation
  • Park, H-S., 2008: Possible responses of ENSO behavior simulated by CCSM3 under different climate change scenarios. CRIEPI Rep. V08001, 1–19.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., S. P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC 20th century climate simulations. J. Climate, 19 , 43974417.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci., 45 , 549566.

  • Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 project plan. ERA-40 Project Rep. 1, 63 pp.

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Ueda, H., and R. Kawamura, 2004: Summertime anomalous warming over the midlatitude western North Pacific and its relationships to the modulation of the Asian monsoon. Int. J. Climatol., 24 , 11091120.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1 , 8195.

  • Vecchi, G. A., 2006: The termination of the 1997–98 El Niño. Part II: Mechanisms of atmospheric change. J. Climate, 19 , 26472664.

  • Vecchi, G. A., and D. E. Harrison, 2003: On the termination of the 2002–03 El Niño event. Geophys. Res. Lett., 30 , 1964. doi:10.1029/2003GL017564.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2006: The termination of the 1997–98 El Niño. Part I: Mechanisms of oceanic change. J. Climate, 19 , 26332646.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anticyclone established during development of El Niño. J. Climate, 15 , 32523265.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13 , 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2001: A unified oscillator model for the El Niño–Southern Oscillation. J. Climate, 14 , 98115.

  • Wang, C., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño-Southern Oscillation. J. Geophys. Res., 104 , 51315149.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: Slow variability in the equatorial west-central Pacific in relation to ENSO. J. Climate, 10 , 19982017.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observation, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., Y. Du, G. Huang, X-T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. J. Climate, 23 , 33523368.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, K., and A. Noda, 2006: Global warming patterns over the North Pacific: ENSO versus AO. J. Meteor. Soc. Japan, 84 , 221241.

  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 121 48
PDF Downloads 91 21 2