Constraining the Sensitivity of Regional Climate with the Use of Historical Observations

Apostolos Voulgarakis NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Apostolos Voulgarakis in
Current site
Google Scholar
PubMed
Close
and
Drew T. Shindell NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Drew T. Shindell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel method is presented for calculating how sensitive regional climate is to radiative forcings, based on global surface temperature observations. Forcings that originate in both the region of interest and outside of it are taken into account. It is found that the transient temperature sensitivity parameter (β, defined as the observed temperature response per unit forcing) can be better constrained for 50°S–25°N than for the rest of the globe. The average β in this region is 0.35°C (W m−2)−1. The models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) 1% yr−1 CO2 increase experiment exhibit a β in this region that, on average, is higher by 35%. The results show that for 50°S–25°N β may provide a more valuable constraint for model evaluation than global mean climate sensitivity.

Corresponding author address: Apostolos Voulgarakis, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. Email: avoulgarakis@giss.nasa.gov

Abstract

A novel method is presented for calculating how sensitive regional climate is to radiative forcings, based on global surface temperature observations. Forcings that originate in both the region of interest and outside of it are taken into account. It is found that the transient temperature sensitivity parameter (β, defined as the observed temperature response per unit forcing) can be better constrained for 50°S–25°N than for the rest of the globe. The average β in this region is 0.35°C (W m−2)−1. The models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) 1% yr−1 CO2 increase experiment exhibit a β in this region that, on average, is higher by 35%. The results show that for 50°S–25°N β may provide a more valuable constraint for model evaluation than global mean climate sensitivity.

Corresponding author address: Apostolos Voulgarakis, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. Email: avoulgarakis@giss.nasa.gov

Save
  • Andronova, N. G., and M. E. Schlesinger, 2001: Objective estimation of the probability density function for climate sensitivity. J. Geophys. Res., 106 , 2260522611.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and B. Yu, 2003: Climate sensitivity and response. Climate Dyn., 20 , 415429.

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111 , D12106. doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Forest, C. E., P. H. Stone, A. P. Sokolov, M. R. Allen, and M. D. Webster, 2002: Quantifying uncertainties in climate system properties with the use of recent climate observations. Science, 295 , 113117.

    • Search Google Scholar
    • Export Citation
  • Forest, C. E., P. H. Stone, and A. P. Sokolov, 2008: Constraining climate model parameters from observed 20th century changes. Tellus, 60B , 911920.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. E. Taylor, 2006: Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J. Climate, 19 , 61816194.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. Coauthors 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Frame, D. J., B. B. B. Booth, J. A. Kettleborough, D. A. Stainforth, J. M. Gregory, M. Collins, and M. R. Allen, 2005: Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Lett., 32 , L09702. doi:10.1029/2004GL022241.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113 , D23105. doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., R. J. Stouffer, S. C. B. Raper, P. A. Stott, and N. A. Rayner, 2002: An observationally based estimate of the climate sensitivity. J. Climate, 15 , 31173121.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103 , 1428814293.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. Coauthors 2007: Dangerous human-made interference with climate: A GISS modelE study. Atmos. Chem. Phys., 7 , 22872312.

  • Hegerl, G. C., T. J. Crowley, W. T. Hyde, and D. J. Frame, 2006: Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 440 , 10291032.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C. Coauthors 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 2007: Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett., 34 , L22710. doi:10.1029/2007GL031383.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and G. C. Hegerl, 2008: The equilibrium sensitivity of the earth’s temperature to radiation changes. Nat. Geosci., 1 , 735743.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and L. Tomassini, 2008: Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophys. Res. Lett., 35 , L09701. doi:10.1029/2007GL032904.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. Coauthors 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., 2009: Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 325 , 187190.

  • Ramaswamy, V. Coauthors 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 349–416.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A. Coauthors 2007: Global models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Shell, K. M., J. T. Kiehl, and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedbacks in NCAR’s community. J. Climate, 21 , 22692282.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and G. Faluvegi, 2009: Climate response to regional radiative forcing during the twentieth century. Nat. Geosci., 2 , 294300.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21 , 35043520.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457 , 459463.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl, and B. D. Santer, 2006: Observational constraints on past attributable warming and predictions of future global warming. J. Climate, 19 , 30553069.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 225 100 19
PDF Downloads 49 23 0