Long-Range Dependence and Climate Noise Characteristics of Antarctic Temperature Data

Christian Franzke British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Christian Franzke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the long-range dependency, climate noise characteristics, and nonlinear temperature trends of eight Antarctic stations from the Reference Antarctic Data for Environmental Research (READER) dataset. Evidence is shown that Antarctic temperatures are long-range dependent. To identify possible nonlinear trends, the ensemble empirical mode decomposition (EEMD) method is used, and then the question of whether the observed trends can arise from internal atmospheric fluctuations is examined. To answer this question, surrogate data are generated from two paradigmatic null models: a standard first-order autoregressive process representing a short-range dependent process and a fractional integrated process representing a long-range dependent process. It is found that three of the eight stations show statistically significant trends when tested against the short-range dependent process while only the Faraday–Vernadsky station temperature time series shows a significant trend when tested against the long-range dependent null model. All other considered stations show no trends that are statistically significant against the two null models, and thus they can be explained by internal atmospheric variability. These results imply that more attention should be given to assessing the correlation structure of climate time series.

Corresponding author address: Dr. C. Franzke, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. Email: chan1@bas.ac.uk

Abstract

This study examines the long-range dependency, climate noise characteristics, and nonlinear temperature trends of eight Antarctic stations from the Reference Antarctic Data for Environmental Research (READER) dataset. Evidence is shown that Antarctic temperatures are long-range dependent. To identify possible nonlinear trends, the ensemble empirical mode decomposition (EEMD) method is used, and then the question of whether the observed trends can arise from internal atmospheric fluctuations is examined. To answer this question, surrogate data are generated from two paradigmatic null models: a standard first-order autoregressive process representing a short-range dependent process and a fractional integrated process representing a long-range dependent process. It is found that three of the eight stations show statistically significant trends when tested against the short-range dependent process while only the Faraday–Vernadsky station temperature time series shows a significant trend when tested against the long-range dependent null model. All other considered stations show no trends that are statistically significant against the two null models, and thus they can be explained by internal atmospheric variability. These results imply that more attention should be given to assessing the correlation structure of climate time series.

Corresponding author address: Dr. C. Franzke, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. Email: chan1@bas.ac.uk

Save
  • Beran, J., 1994: Statistics for Long-Memory Processes. Chapman and Hall, 315 pp.

  • Bernstein, L. Coauthors 2007: Climate Change 2007: Synthesis Report. Cambridge University Press, 104 pp.

  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13 , 44304440.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: The recent trend and variance increase of the annular mode. J. Climate, 15 , 8894.

  • Fischer-Bruns, I., H. von Storch, J. F. González-Rouco, and E. Zorita, 2005: Modelling the variability of midlatitude storm activity on decadal to century time scales. Climate Dyn., 25 , 461476. doi:10.1007/s00382-005-0036-1.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2009: Multi-scale analysis of teleconnection indices: Climate noise and nonlinear trend analysis. Nonlinear Processes Geophys., 16 , 6576.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 2009: Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer, 447 pp.

  • Geweke, J., and S. Porter-Hudak, 1983: The estimation and application of long-memory time series models. J. Time Ser. Anal., 4 , 221238.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and R. Vautard, 1991: Interdecadal oscillations and the warming trend in global temperature time series. Nature, 350 , 324327. doi:10.1038/350324a0.

    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., 2005: Statistical modeling of the temperatures in the Northern Hemisphere using fractional integration techniques. J. Climate, 18 , 53575369.

    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., 1980: Long memory relationship and the aggregation of dynamic models. J. Econ., 14 , 227238.

  • Graves, T., 2009: Detection of long-range dependencies in time series from nature. M. Phil. thesis, Dept. of Pure Mathematics and Mathematical Statistics, Cambridge University, 73 pp.

  • Hosking, J. R. M., 1981: Fractional differencing. Biometrika, 68 , 165176.

  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46 , RG2006. doi:10.1029/2007RG000228.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E. Coauthors 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, 454A , 903995.

    • Search Google Scholar
    • Export Citation
  • Hurvich, C. M., and R. S. Deo, 1999: Plug-in selection of the number of frequencies in regression estimates of the memory parameter of a long-memory time series. J. Time Ser. Anal., 20 , 331341.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., and W. Curry, 2006: Links between annual, Milankovitch and continuum temperature variability. Nature, 441 , 329332. doi:10.1038/nature04745.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453 , 8488. doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Kim, C. S., and P. C. B. Phillips, 2006: Log periodogram regression: The nonstationary case. Cowles Foundation Discussion Pap. 1587, 29 pp.

    • Search Google Scholar
    • Export Citation
  • Knight, J. Coauthors 2009: Do global temperature trends over the last decade falsify climate predictions? State of the Climate in 2008. Bull. Amer. Meteor. Soc., 90 , S22S24.

    • Search Google Scholar
    • Export Citation
  • Koscielny-Bunde, E., A. Bunde, S. Havlin, H. Eduardo Roman, Y. Goldreich, and H-J. Schellnhuber, 1998: Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett., 81 , 729732.

    • Search Google Scholar
    • Export Citation
  • Künsch, H., 1986: Discrimination between monotonic trends and long-range dependence. J. Appl. Probab., 23 , 10251030.

  • Leckebusch, G. C., and U. Ulbrich, 2004: On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global Planet. Change, 44 , 181193.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev., 104 , 942952.

  • Malamud, B. D., and D. L. Turcotte, 1999: Self-affine time series: I. Generation and analyses. Advances in Geophysics, Vol. 40, Academic Press, 1–90.

    • Search Google Scholar
    • Export Citation
  • Percival, D. B., and D. A. Rothrock, 2005: “Eyeballing” trends in climate time series: A cautionary note. J. Climate, 18 , 886891.

    • Search Google Scholar
    • Export Citation
  • Percival, D. B., J. E. Overland, and H. O. Mofjeld, 2001: Interpretation of North Pacific variability as a short- and long-memory process. J. Climate, 14 , 45454559.

    • Search Google Scholar
    • Export Citation
  • Robinson, P. M., 1978: Statistical inference for a random coefficient autoregressive model. Scand. J. Stat., 5 , 163168.

  • Robinson, P. M., 1995: Log-periodogram regression of time series with long range dependence. J. Stat., 23 , 10481072.

  • Robinson, P. M., 2003: Long-memory time series. Time Series with Long Memory, P. M. Robinson, Ed., Oxford University Press, 382 pp.

  • Rybski, D., A. Bunde, S. Havlin, and H. von Storch, 2006: Long-term persistence in climate and the detection problem. Geophys. Res. Lett., 33 , L06718. doi:10.1029/2005GL025591.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105 , 73377356.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D. Coauthors 2008: Consistency of modelled and observed temperature trends in the tropical troposphere. Int. J. Climatol., 28 , 17031722.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457 , 459462. doi:10.1038/nature08286.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., V. Pavan, and R. Bojariu, 2000: Is the North Atlantic Oscillation a random walk? Int. J. Climatol., 20 , 118.

  • Stoev, S., and M. R. Taqqu, 2004: Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier transform. Fractals, 12 , 95121. doi:10.1142/S0218348X04002379.

    • Search Google Scholar
    • Export Citation
  • Taqqu, M. S., and V. Teverovsky, 1998: On estimating the intensity of long-range dependence in finite and infinite variance time series. A Practical Guide to Heavy Tails: Statistical Techniques and Applications, R. J. Adler, R. E. Feldman, and M. S. Taqqu, Eds., Birkhäuser, 177–218.

    • Search Google Scholar
    • Export Citation
  • Thomas, E. R., P. F. Dennis, T. J. Bracegirdle, and C. Franzke, 2009: Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula. Geophys. Res. Lett., 36 , L20704. doi:10.1029/2009GL040104.

    • Search Google Scholar
    • Export Citation
  • Turner, J. Coauthors 2004: The SCAR READER project: Toward a high-quality database of mean Antarctic meteorological observations. J. Climate, 17 , 28902898.

    • Search Google Scholar
    • Export Citation
  • Turner, J. Coauthors 2005: Antarctic climate change during the last 50 years. Int. J. Climatol., 25 , 279294.

  • Velasco, C., 1999: Non-stationary log-periodogram regression. J. Econ., 91 , 325371.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Vyushin, D. I., and P. J. Kushner, 2009: Power-law and long-memory characteristics of the atmospheric general circulation. J. Climate, 22 , 28902904.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1 , 141.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, S. R. Long, and C. K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104 , 1488914894.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 792 158 8
PDF Downloads 510 115 6