The Importance of Ice Vertical Resolution for Snowball Climate and Deglaciation

Dorian S. Abbot Department of Geophysical Sciences, University of Chicago, Chicago, Illinois

Search for other papers by Dorian S. Abbot in
Current site
Google Scholar
PubMed
Close
,
Ian Eisenman Division of Geological and Planetary Sciences, California Institute of Technology, and Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Ian Eisenman in
Current site
Google Scholar
PubMed
Close
, and
Raymond T. Pierrehumbert Department of Geophysical Sciences, University of Chicago, Chicago, Illinois

Search for other papers by Raymond T. Pierrehumbert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea ice schemes with a few vertical levels are typically used to simulate the thermodynamic evolution of sea ice in global climate models. Here it is shown that these schemes overestimate the magnitude of the diurnal surface temperature cycle by a factor of 2–3 when they are used to simulate tropical ice in a Snowball earth event. This could strongly influence our understanding of Snowball termination, which occurs in global climate models when the midday surface temperature in the tropics reaches the melting point. A hierarchy of models is used to show that accurate simulation of surface temperature variation on a given time scale requires that a sea ice model resolve the e-folding depth to which a periodic signal on that time scale penetrates. This is used to suggest modifications to the sea ice schemes used in global climate models that would allow more accurate simulation of Snowball deglaciation.

Corresponding author address: Dorian Abbot, Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Ave., Chicago, IL 60637. Email: abbot@uchicago.edu

Abstract

Sea ice schemes with a few vertical levels are typically used to simulate the thermodynamic evolution of sea ice in global climate models. Here it is shown that these schemes overestimate the magnitude of the diurnal surface temperature cycle by a factor of 2–3 when they are used to simulate tropical ice in a Snowball earth event. This could strongly influence our understanding of Snowball termination, which occurs in global climate models when the midday surface temperature in the tropics reaches the melting point. A hierarchy of models is used to show that accurate simulation of surface temperature variation on a given time scale requires that a sea ice model resolve the e-folding depth to which a periodic signal on that time scale penetrates. This is used to suggest modifications to the sea ice schemes used in global climate models that would allow more accurate simulation of Snowball deglaciation.

Corresponding author address: Dorian Abbot, Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Ave., Chicago, IL 60637. Email: abbot@uchicago.edu

Save
  • Abbot, D. S., and E. Tziperman, 2008: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35 , L03702. doi:10.1029/2007GL032286.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and E. Tziperman, 2009: Controls on the activation and strength of a high-latitude convective cloud feedback. J. Atmos. Sci., 66 , 519529.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and I. Halevy, 2010: Dust aerosol important for snowball deglaciation. J. Climate, 23 , 41214132.

  • Abbot, D. S., and R. T. Pierrehumbert, 2010: Mudball: Surface dust and Snowball Earth deglaciation. J. Geophys. Res., 115 , D03104. doi:10.1029/2009JD012007.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., J. R. Scott, and J. Marotzke, 2001: Impact of geothermal heating on the global ocean circulation. Geophys. Res. Lett., 28 , 17351738.

    • Search Google Scholar
    • Export Citation
  • Bao, H. M., J. R. Lyons, and C. M. Zhou, 2008: Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature, 453 , 504506.

    • Search Google Scholar
    • Export Citation
  • Bao, H. M., I. Fairchild, P. Wynn, and C. Spötl, 2009: Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science, 323 , 119122.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G., 1967: An Introduction to Fluid Dynamics. 1st ed. Cambridge University Press, 615 pp.

  • Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104 , 1566915677.

  • Bitz, C. M., M. Holland, A. Weaver, and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106 , (C2). 24412463.

    • Search Google Scholar
    • Export Citation
  • Caldeira, K., and J. F. Kasting, 1992: Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature, 359 , 226228.

    • Search Google Scholar
    • Export Citation
  • Carslaw, H., and J. Jaeger, 1959: Conduction of Heat in Solids. 2nd ed. Oxford University Press, 510 pp.

  • Christie-Blick, N., L. E. Sohl, M. J. Kennedy, P. F. Hoffman, and D. P. Schrag, 1999: Considering a Neoproterozoic Snowball Earth. Science, 284 , 1087.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., Y. Goddéris, G. Ramstein, A. Nédélec, and J. Meert, 2004: A “Snowball Earth” climate triggered by continental break-up through changes in runoff. Nature, 428 , 303306.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., and J. S. Wettlaufer, 2009: Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Natl. Acad. Sci. USA, 106 , 2832.

    • Search Google Scholar
    • Export Citation
  • Evans, D. A. D., 2000: Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Amer. J. Sci., 300 , 347433.

    • Search Google Scholar
    • Export Citation
  • Fetterer, E., and N. Untersteiner, 1998: Observations of melt ponds on Arctic sea ice. J. Geophys. Res., 103 , (C11). 2482124835.

  • Fourier, J., 1826: Théorie du mouvement de la chaleur dans les corps solides. Mémoires de l’Académie Royale des Sciences de l’Institute de France, années 1821 et 1822, Vol. 5, Royal Academy of Science, 153–246.

    • Search Google Scholar
    • Export Citation
  • Goodman, J. C., 2006: Through thick and thin: Marine and meteoric ice in a “Snowball Earth” climate. Geophys. Res. Lett., 33 , L16701. doi:10.1029/2006GL026840.

    • Search Google Scholar
    • Export Citation
  • Goodman, J. C., and R. T. Pierrehumbert, 2003: Glacial flow of floating marine ice in “Snowball Earth”. J. Geophys. Res., 108 , 3308. doi:10.1029/2002JC001471.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T., and D. Perovich, 1984: Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea. J. Geophys. Res., 89 , 35733580.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. E. Truesdale, J. A. Pedretti, and J. C. Petch, cited. 2004: SCAM Users’ Guide. [Available online at http://www.ccsm.ucar.edu/models/atm-cam/docs/scam/].

    • Search Google Scholar
    • Export Citation
  • Higgins, J. A., and D. P. Schrag, 2003: Aftermath of a snowball. Geochem. Geophys. Geosyst., 4 , 1028. doi:10.1029/2002GC000403.

  • Hoffman, P. F., and Z-X. Li, 2009: A palaeogeographic context for Neoproterozoic glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 277 , 158172.

    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag, 1998: A Neoproterozoic Snowball Earth. Science, 281 , 13421346.

  • Hyde, W. T., T. J. Crowley, S. K. Baum, and W. R. Peltier, 2000: Neoproterozoic ‘Snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405 , 425429.

    • Search Google Scholar
    • Export Citation
  • Kirschvink, J., 1992: Late Proterozoic low-latitude global glaciation: The snowball Earth. The Proterozoic Biosphere: A Multidisciplinary Study, J. Schopf and C. Klein, Eds., Cambridge University Press, 51–52.

    • Search Google Scholar
    • Export Citation
  • Landau, L., and E. M. Lifshitz, 1959: Fluid Mechanics (in Russian). Pergamon Press, 536 pp.

  • Langleben, M., 1971: Albedo of melting sea ice in the southern Beaufort Sea. J. Glaciol., 10 , 101104.

  • Le Hir, G., G. Ramstein, Y. Donnadieu, and R. T. Pierrehumbert, 2007: Investigating plausible mechanisms to trigger a deglaciation from a hard snowball Earth. C. R. Geosci., 339 , 274287.

    • Search Google Scholar
    • Export Citation
  • Le Hir, G., G. Ramstein, Y. Donnadieu, and Y. Goddéris, 2008: Scenario for the evolution of atmospheric pCO2 during a snowball Earth. Geology, 36 , 4750.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., A. J. Weaver, and M. Eby, 2006: Deglaciating the snowball Earth: Sensitivity to surface albedo. Geophys. Res. Lett., 33 , L23604. doi:10.1029/2006GL027774.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76 , 15501575.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2004: High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature, 429 , 646649.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2005: Climate dynamics of a hard snowball Earth. J. Geophys. Res., 110 , D01111. doi:10.1029/2004JD005162.

  • Pollard, D., and J. F. Kasting, 2005: Snowball Earth: A thin-ice solution with flowing sea glaciers. J. Geophys. Res., 110 , C07010. doi:10.1029/2004JC002525.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., and J. F. Kasting, 2006: Reply to comment by Stephen G. Warren and Richard E. Brandt on “Snowball Earth: A thin-ice solution with flowing sea glaciers”. J. Geophys. Res., 111 , C09017. doi:10.1029/2006JC003488.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., 2003: Absence of a runaway ice-albedo feedback in the Neoproterozoic. Geology, 31 , 473476.

  • Poulsen, C. J., and R. L. Jacob, 2004: Factors that inhibit snowball Earth simulation. Paleoceanography, 19 , PA4021. doi:10.1029/2004PA001056.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., R. T. Pierrehumbert, and R. L. Jacob, 2001: Impact of ocean dynamics on the simulation of the Neoproterozoic “Snowball Earth”. Geophys. Res. Lett., 28 , 15751578.

    • Search Google Scholar
    • Export Citation
  • Romanova, V., G. Lohmann, and K. Grosfeld, 2006: Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Climate Past, 2 , 3142.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6 , 379389.

    • Search Google Scholar
    • Export Citation
  • Stefan, J., 1891: Uber die Theorie der Eisbildung, insbesondere uber die Eisbildung im Polarmeere. Ann. Phys., 291 , 269286.

  • Stokes, G., 1851: On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Philos. Soc., 9 , 8106.

    • Search Google Scholar
    • Export Citation
  • Trindade, R. I. F., and M. Macouin, 2007: Palaeolatitude of glacial deposits and palaeogeography of Neoproterozoic ice ages. C. R. Geosci., 339 , 200211.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., and J. Marotzke, 2010: The transition from the present-day climate to a modern Snowball Earth. Climate Dyn., doi:10.1007/s00382-009-0633-5. in press,.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2006: Comment on “Snowball Earth: A thin-ice solution with flowing sea glaciers” by David Pollard and James F. Kasting. J. Geophys. Res., 111 , C09016. doi:10.1029/2005JC003411.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., R. E. Brandt, T. C. Grenfell, and C. P. Mckay, 2002: Snowball Earth: Ice thickness on the tropical ocean. J. Geophys. Res., 107 , 3167. doi:10.1029/2001JC001123.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 841 591 21
PDF Downloads 195 48 1