Abstract
The present work assesses spring and summer precipitation over North America as well as summer precipitation variability over the central United States and its SST links in simulations of the twentieth-century climate and projections of the twenty-first- and twenty-second-century climates for the A1B scenario.
The observed spatial structure of spring and summer precipitation poses a challenge for models, particularly over the western and central United States. Tendencies in spring precipitation in the twenty-first century agree with the observed ones at the end of the twentieth century over a wetter north-central and a drier southwestern United States, and a drier southeastern Mexico. Projected wetter springs over the Great Plains in the twenty-first and twenty-second centuries are associated with an increase in the number of extreme springs. In contrast, projected summer tendencies have demonstrated little consistency. The associated observed changes in SSTs bear the global warming footprint, which is not well captured in the twentieth-century climate simulations.
Precipitation variability over the Great Plains presents a coherent picture in spring but not in summer. Models project an increase in springtime precipitation variability owing to an increased number of extreme springs. The number of extreme droughty (pluvial) events during the spring–fall part of the year is under(over)estimated in the twentieth century without consistent projections.
Summer precipitation variability over the Great Plains is linked to SSTs over the Pacific and Atlantic Oceans, with no apparent ENSO link in spite of the exaggerated variability in the equatorial Pacific in climate simulations; this has been identified already in observations and atmospheric models forced with historical SSTs. This link is concealed due to the increased warming in the twenty-first century. Deficiencies in land surface–atmosphere interactions and global teleconnections in the climate models prevent them from a better portrayal of summer precipitation variability in the central United States.
Corresponding author address: Alfredo Ruiz-Barradas, 3405 Computer and Space Sciences Bldg., University of Maryland, College Park, College Park, MD 20742-2425. Email: alfredo@atmos.umd.edu